/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #include <cassert> #include <chrono> // std::chrono::milliseconds #include <numeric> // std::accumulate #include <thread> // std::this_thread::sleep_for #include <vector> #include "aidge/utils/Types.h" #include "aidge/operator/Conv.hpp" #include "aidge/backend/cuda/data/TensorImpl.hpp" #include "aidge/backend/cuda/operator/ConvImpl.hpp" #include "aidge/backend/cuda/utils/CudaContext.hpp" template <Aidge::DimIdx_t DIM> Aidge::NbElts_t Aidge::ConvImpl_cuda<DIM>::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const { assert(mOp.getInput(inputIdx) && "requires valid input"); // Requires the whole tensors const auto &inputDims = std::static_pointer_cast<Tensor>(mOp.getInput(inputIdx))->dims(); return std::accumulate(inputDims.begin(), inputDims.end(), Aidge::NbElts_t(1), std::multiplies<NbElts_t>()); } template <Aidge::DimIdx_t DIM> Aidge::NbElts_t Aidge::ConvImpl_cuda<DIM>::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const { // for the direct convolution algorithm, convolutions can be in-place, if // there is no padding! return 0; } template <Aidge::DimIdx_t DIM> Aidge::NbElts_t Aidge::ConvImpl_cuda<DIM>::getRequiredMemory(const Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t> &/*inputsSize*/) const { // Requires the whole tensors, regardless of available data on inputs assert(outputIdx == 0 && "operator has only one output"); (void) outputIdx; const auto &outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims(); return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>()); } template <Aidge::DimIdx_t DIM> Aidge::NbElts_t Aidge::ConvImpl_cuda<DIM>::getNbConsumedData(Aidge::IOIndex_t inputIdx) const { assert(static_cast<std::size_t>(inputIdx) < mNbConsumedData.size()); return mNbConsumedData[static_cast<std::size_t>(inputIdx)]; } template <Aidge::DimIdx_t DIM> Aidge::NbElts_t Aidge::ConvImpl_cuda<DIM>::getNbProducedData(Aidge::IOIndex_t outputIdx) const { assert((outputIdx == 0) && (static_cast<std::size_t>(outputIdx) < mNbProducedData.size())); return mNbProducedData[static_cast<std::size_t>(outputIdx)]; } template <Aidge::DimIdx_t DIM> void Aidge::ConvImpl_cuda<DIM>::updateConsummerProducer(){ // Update producer-consumer data for (std::size_t inputIdx = 0; inputIdx < mNbConsumedData.size(); ++inputIdx) mNbConsumedData[inputIdx] += getNbRequiredData(static_cast<IOIndex_t>(inputIdx)); // each input is consumed by the minimum // amount for a forward pass mNbProducedData[0] += getRequiredMemory(0, {}); } template <Aidge::DimIdx_t DIM> void Aidge::ConvImpl_cuda<DIM>::forward() { // FIXME: uncomment the following code once memory handling will work assert(mOp.getInput(0) && "missing input #0"); assert(mOp.getInput(1) && "missing input #1"); // Lazy-initialize CuDNN convolution descriptor if (mConvDesc == nullptr) { const std::vector<int> strides(mOp.template get<ConvParam::StrideDims>().begin(), mOp.template get<ConvParam::StrideDims>().end()); const std::vector<int> paddings(DIM, 0); const std::vector<int> upscales(mOp.template get<ConvParam::DilationDims>().begin(), mOp.template get<ConvParam::DilationDims>().end()); CHECK_CUDNN_STATUS(cudnnCreateConvolutionDescriptor(&mConvDesc)); CHECK_CUDNN_STATUS( cudnnSetConvolutionNdDescriptor(mConvDesc, DIM, &paddings[0], &strides[0], &upscales[0], CUDNN_CROSS_CORRELATION, DataTypeToCudnn(mOp.getOutput(0)->dataType()))); } // Lazy-initialize CuDNN filter descriptor if (mFilterDesc == nullptr) { const std::vector<int> kernels(mOp.getInput(1)->dims().begin(), mOp.getInput(1)->dims().end()); CHECK_CUDNN_STATUS(cudnnCreateFilterDescriptor(&mFilterDesc)); CHECK_CUDNN_STATUS(cudnnSetFilterNdDescriptor(mFilterDesc, DataTypeToCudnn(mOp.getInput(1)->dataType()), CUDNN_TENSOR_NCHW, kernels.size(), &kernels[0])); } // Set forward algorithm and allocate the required workspace if (mWorkspace == nullptr) { // Find the best CuDNN forward algorithm (the one with the lowest compute time) int maxAlgoIterations = 0; cudnnGetConvolutionForwardAlgorithmMaxCount(CudaContext::cudnnHandle(), &maxAlgoIterations); assert(maxAlgoIterations > 0 && "No available CUDNN ConvolutionForwardAlgorithm"); int returnAlgoCounts = 0; std::vector<cudnnConvolutionFwdAlgoPerf_t> returnFwdAlgo(maxAlgoIterations); CHECK_CUDNN_STATUS(cudnnFindConvolutionForwardAlgorithm( CudaContext::cudnnHandle(), dynamic_cast<TensorImpl_cuda_*>(mOp.getInput(0)->getImpl().get())->getCudnnTensorDesc(), mFilterDesc, mConvDesc, dynamic_cast<TensorImpl_cuda_*>(mOp.getOutput(0)->getImpl().get())->getCudnnTensorDesc(), maxAlgoIterations, &returnAlgoCounts, &returnFwdAlgo[0])); mFwdAlgo = returnFwdAlgo[0].algo; // Allocate the workspace required by the chosen CuDNN forward algorithm size_t workspaceSize = 0; CHECK_CUDNN_STATUS(cudnnGetConvolutionForwardWorkspaceSize( CudaContext::cudnnHandle(), dynamic_cast<TensorImpl_cuda_*>(mOp.getInput(0)->getImpl().get())->getCudnnTensorDesc(), mFilterDesc, mConvDesc, dynamic_cast<TensorImpl_cuda_*>(mOp.getOutput(0)->getImpl().get())->getCudnnTensorDesc(), mFwdAlgo, &workspaceSize)); CHECK_CUDA_STATUS(cudaMalloc(&mWorkspace, workspaceSize)); mWorkspaceSize = workspaceSize; } // Do the actual forward computation // Template is only for scaling parameters, which are always in float // excepted when the convolution is performed in double precision. if (mOp.getOutput(0)->dataType() == DataType::Float64) { forward_<double>(); } else { forward_<float>(); } } template <Aidge::DimIdx_t DIM> template <class T> void Aidge::ConvImpl_cuda<DIM>::forward_() { const typename Cuda::cudnn_scaling_type<T>::type alpha = 1.0f; typename Cuda::cudnn_scaling_type<T>::type beta = 0.0f; CHECK_CUDNN_STATUS( cudnnConvolutionForward(CudaContext::cudnnHandle(), &alpha, dynamic_cast<TensorImpl_cuda_*>(mOp.getInput(0)->getImpl().get())->getCudnnTensorDesc(), mOp.getInput(0)->getImpl()->rawPtr(), mFilterDesc, mOp.getInput(1)->getImpl()->rawPtr(), mConvDesc, mFwdAlgo, mWorkspace, mWorkspaceSize, &beta, dynamic_cast<TensorImpl_cuda_*>(mOp.getOutput(0)->getImpl().get())->getCudnnTensorDesc(), mOp.getOutput(0)->getImpl()->rawPtr())); // Add bias (if there is any) if (mOp.getInput(2) && mOp.getInput(2)->size() > 0) { // Bias tensor needs to have the same number of dims than output tensor for cudnnAddTensor() std::vector<DimSize_t> biasDims(DIM+2, 1); biasDims[1] = mOp.getInput(2)->size(); // Create a dummy tensor with the right dims in order to get a CuDNN tensor descriptor (with getCudnnTensorDesc()) Tensor bias(mOp.getInput(2)->dataType()); bias.setBackend("cuda"); bias.resize(biasDims); // TODO: find a more elegant solution(?) CHECK_CUDNN_STATUS(cudnnAddTensor(CudaContext::cudnnHandle(), &alpha, dynamic_cast<TensorImpl_cuda_*>(bias.getImpl().get())->getCudnnTensorDesc(), mOp.getInput(2)->getImpl()->rawPtr(), &alpha, dynamic_cast<TensorImpl_cuda_*>(mOp.getOutput(0)->getImpl().get())->getCudnnTensorDesc(), mOp.getOutput(0)->getImpl()->rawPtr())); } } template <Aidge::DimIdx_t DIM> Aidge::ConvImpl_cuda<DIM>::~ConvImpl_cuda() { if (mConvDesc != nullptr) { cudnnDestroyConvolutionDescriptor(mConvDesc); } if (mFilterDesc != nullptr) { cudnnDestroyFilterDescriptor(mFilterDesc); } if (mWorkspace != nullptr) { cudaFree(mWorkspace); } } template <Aidge::DimIdx_t DIM> void Aidge::ConvImpl_cuda<DIM>::backward() { printf("Not implemented yet.\n"); } // Template declarations template class Aidge::ConvImpl_cuda<2>;