diff --git a/include/aidge/backend/cuda.hpp b/include/aidge/backend/cuda.hpp index 963c694e01d9f2813eb95622c1c475eb40bf7bb1..4743f6e0e222bd35557ef61d7c1ee7040dc25cba 100644 --- a/include/aidge/backend/cuda.hpp +++ b/include/aidge/backend/cuda.hpp @@ -15,6 +15,7 @@ #include "aidge/backend/cuda/data/TensorImpl.hpp" #include "aidge/backend/cuda/operator/AvgPoolingImpl.hpp" #include "aidge/backend/cuda/operator/ConvImpl.hpp" +#include "aidge/backend/cuda/operator/FCImpl.hpp" #include "aidge/backend/cuda/operator/MaxPoolingImpl.hpp" #include "aidge/backend/cuda/operator/ProducerImpl.hpp" #include "aidge/backend/cuda/operator/ReLUImpl.hpp" diff --git a/include/aidge/backend/cuda/operator/FCImpl.hpp b/include/aidge/backend/cuda/operator/FCImpl.hpp new file mode 100644 index 0000000000000000000000000000000000000000..b06d42e64ce5272e975f0dcf4039ccd78f24f78a --- /dev/null +++ b/include/aidge/backend/cuda/operator/FCImpl.hpp @@ -0,0 +1,59 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_BACKEND_CUDA_OPERATOR_FCIMPL_H_ +#define AIDGE_BACKEND_CUDA_OPERATOR_FCIMPL_H_ + +#include <array> +#include <memory> +#include <tuple> +#include <vector> + +#include <cudnn.h> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/operator/FC.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +#include "aidge/backend/cuda/utils/CudaUtils.hpp" + +namespace Aidge { +class FCImplForward_cuda : public Registrable<FCImplForward_cuda, + std::tuple<DataType>, + void(unsigned int , unsigned int , unsigned int, bool, const void* , const void* , const void* , void*)> {}; +class FCImpl_cuda : public OperatorImpl { +private: + // CuDNN specific variables + + +public: + FCImpl_cuda(const FC_Op &op) : OperatorImpl(op) {} + + static std::unique_ptr<FCImpl_cuda> create(const FC_Op &op) { + return std::make_unique<FCImpl_cuda>(op); + } + +public: + void forward(); + // ~FCImpl_cuda(); + +private: + template <class T> void forward_(const Tensor& input0, const Tensor& input1, const Tensor& input2, bool noBias, DimSize_t outChannels); +}; + +namespace { +// add cuda backend to FC_Op implementation registry +static Registrar<FC_Op> registrarFCImpl_cuda("cuda", Aidge::FCImpl_cuda::create); +} // namespace +} // namespace Aidge + +#endif /* AIDGE_BACKEND_CUDA_OPERATOR_FCIMPL_H_ */ diff --git a/include/aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp b/include/aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp new file mode 100644 index 0000000000000000000000000000000000000000..fac838f5ee7b11c67736e6ed83df4aa876b2825b --- /dev/null +++ b/include/aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp @@ -0,0 +1,35 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CUDA_OPERATOR_FCIMPL_FORWARD_KERNEL_H_ +#define AIDGE_CUDA_OPERATOR_FCIMPL_FORWARD_KERNEL_H_ + +#include <stdexcept> +#include <cfloat> +#include <cuda.h> +#include <cuda_runtime_api.h> + +#include "aidge/data/Data.hpp" +#include "aidge/backend/cuda/operator/FCImpl.hpp" +#include "aidge/backend/cuda/utils/CudaUtils.hpp" + +namespace Aidge { + +template<class T> +void fc_forward_cuda(DimSize_t nbInputs, DimSize_t inChannels, DimSize_t outChannels, bool noBias, const void *input, const void *weights, const void *bias, void *output); + +namespace { +static Registrar<FCImplForward_cuda> registrarFCImpl2DForward_cuda_Float32({DataType::Float32}, Aidge::fc_forward_cuda<float>); +static Registrar<FCImplForward_cuda> registrarFCImpl2DForward_cuda_Float64({DataType::Float64}, Aidge::fc_forward_cuda<double>); +} // namespace + +} +#endif /* AIDGE_CUDA_OPERATOR_FCIMPL_FORWARD_KERNEL_H_ */ \ No newline at end of file diff --git a/src/operator/FCImpl.cpp b/src/operator/FCImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..5b2183b56208f8f9d8d1d972dc26fe9c03835694 --- /dev/null +++ b/src/operator/FCImpl.cpp @@ -0,0 +1,60 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <cassert> +#include <chrono> // std::chrono::milliseconds +#include <numeric> // std::accumulate +#include <thread> // std::this_thread::sleep_for +#include <vector> +#include <iostream> +#include "aidge/utils/Types.h" +#include "aidge/operator/FC.hpp" + +#include "aidge/backend/cuda/data/TensorImpl.hpp" +#include "aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp" +#include "aidge/backend/cuda/operator/FCImpl.hpp" +#include "aidge/backend/cuda/utils/CudaContext.hpp" + + +void Aidge::FCImpl_cuda::forward() { + assert(mOp.getRawInput(0) && "missing input #0"); + assert(mOp.getRawInput(1) && "missing input #1"); + assert(mOp.getRawInput(2) && "missing input #2"); + + std::shared_ptr<Tensor> inputFallback, input1Fallback, input2Fallback; + const auto& input0 = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->refCastFrom(inputFallback, *std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))); + const auto& input1 = std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->refCastFrom(input1Fallback, *std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))); + const auto& input2 = std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->refCastFrom(input2Fallback, *std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))); + + const FC_Op& fcOp = static_cast<const FC_Op&>(mOp); + bool noBias = fcOp.template getAttr<FCAttr::NoBias>(); + DimSize_t outChannels = fcOp.template getAttr<FCAttr::OutChannels>(); + if (std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType() == DataType::Float64) { + forward_<double>(input0, input1, input2, noBias, outChannels); + } + else { + forward_<float>(input0, input1, input2, noBias, outChannels); + } +} + +template<class T> +void Aidge::FCImpl_cuda::forward_(const Tensor& input0, const Tensor& input1, const Tensor& input2, bool noBias, DimSize_t outChannels) +{ + Aidge::fc_forward_cuda<T>( + input0.dims()[0], + input0.size() / input0.dims()[0], + outChannels, + noBias, + input0.getImpl()->rawPtr(), + input1.getImpl()->rawPtr(), + input2.getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); +} \ No newline at end of file diff --git a/src/operator/FCImpl_CUDA_kernels.cu b/src/operator/FCImpl_CUDA_kernels.cu new file mode 100644 index 0000000000000000000000000000000000000000..14d731f33e1a8edc5a6126d5d1f026b7d2af64c9 --- /dev/null +++ b/src/operator/FCImpl_CUDA_kernels.cu @@ -0,0 +1,48 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ +#include <stdio.h> + +#include "aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp" + +template<class T> +__global__ +void fc_forward_cuda_kernel(std::size_t nbInputs, std::size_t inChannels, std::size_t outChannels, bool noBias,const T* input, const T* weights, const T* bias, T *output) +{ + const std::size_t idx = blockIdx.x * blockDim.x + threadIdx.x; + + for(std::size_t batch=idx; batch<nbInputs; ++batch) + { + for (std::size_t out = 0; out < outChannels; ++out) { + T sum = 0; + for (std::size_t in = 0; in < inChannels; ++in) { + sum += input[batch * inChannels + in] * weights[out * inChannels + in]; + } + output[batch * outChannels + out] = sum + (noBias ? 0 : bias[out]); + } + } +} + +namespace Aidge{ +template<class T> +void fc_forward_cuda(DimSize_t nbInputs, DimSize_t inChannels, DimSize_t outChannels, bool noBias, const void* input_, const void* weights_, const void* bias_, void* output_) +{ + const T* input = static_cast<const T*>(input_); + const T* weights = static_cast<const T*>(weights_); + const T* bias = static_cast<const T*>(bias_); + T * output = static_cast<T*>(output_); + + const dim3 blocksPerGrid = {(static_cast<unsigned int>(inChannels) + 255) / 256, 1, static_cast<unsigned int>(outChannels)}; + const dim3 threadsPerBlocks = {256, 1, 1}; + + fc_forward_cuda_kernel<<<blocksPerGrid, threadsPerBlocks>>>(nbInputs, inChannels, outChannels, noBias, input, weights, bias, output); + CHECK_CUDA_STATUS(cudaPeekAtLastError()); +} +} diff --git a/unit_tests/Test_FCImpl.cpp b/unit_tests/Test_FCImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..05624d96b17a73ce84e9978599da849ad20c2764 --- /dev/null +++ b/unit_tests/Test_FCImpl.cpp @@ -0,0 +1,134 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <array> + +#include <catch2/catch_test_macros.hpp> + +#include "Test_cuda.hpp" + +#include "aidge/data/Tensor.hpp" + +#include "aidge/backend/cpu.hpp" +#include "aidge/backend/cuda.hpp" + +using namespace Aidge; + +TEST_CASE("[gpu/operator] FC(forward)", "[FC][GPU]") { + std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array2D<float, 5, 75>{ + {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, + {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, + {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, + {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, + {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}}); + std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(Array1D<float, 5>{{1, 2, 3, 4, 5}}); + std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array2D<float, 2, 5>{ + {{23601, 23602, 23603, 23604, 23605}, {68601, 68602, 68603, 68604, 68605}}}); + myWeights->setBackend("cuda"); + myBias->setBackend("cuda"); + std::shared_ptr<Node> myFC = FC(75, 5, false, "myfc"); + auto op = std::static_pointer_cast<OperatorTensor>(myFC -> getOperator()); + op -> associateInput(1, myWeights); + op -> associateInput(2, myBias); + SECTION("2D input") { + std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array2D<float, 2, 75>{ + {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, + 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, + 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74}, + {75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, + 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, + 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149}}}); + myInput->setBackend("cuda"); + op->associateInput(0, myInput); + op -> setDataType(DataType::Float32); + op -> setBackend("cuda"); + op->computeOutputDims(); + myFC->forward(); + + float* computedOutput = new float[myOutput->size()](); + cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(float) * myOutput->size(), cudaMemcpyDeviceToHost); + + for(int i = 0; i < myOutput->size(); i++){ + const float targetOutput = *(static_cast<float*>(myOutput->getImpl()->rawPtr()) + i); + std::cout << "targetOutput " << targetOutput << ", out " << computedOutput[i]<<std::endl; + REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6); + } + + delete[] computedOutput; + } + SECTION("4D input") { + std::shared_ptr<Tensor> myInput = + std::make_shared<Tensor>(Array4D<float, 2, 3, 5, 5>{{{{{0, 1, 2, 3, 4}, + {5, 6, 7, 8, 9}, + {10, 11, 12, 13, 14}, + {15, 16, 17, 18, 19}, + {20, 21, 22, 23, 24}}, + {{25, 26, 27, 28, 29}, + {30, 31, 32, 33, 34}, + {35, 36, 37, 38, 39}, + {40, 41, 42, 43, 44}, + {45, 46, 47, 48, 49}}, + {{50, 51, 52, 53, 54}, + {55, 56, 57, 58, 59}, + {60, 61, 62, 63, 64}, + {65, 66, 67, 68, 69}, + {70, 71, 72, 73, 74}}}, + {{{75, 76, 77, 78, 79}, + {80, 81, 82, 83, 84}, + {85, 86, 87, 88, 89}, + {90, 91, 92, 93, 94}, + {95, 96, 97, 98, 99}}, + {{100, 101, 102, 103, 104}, + {105, 106, 107, 108, 109}, + {110, 111, 112, 113, 114}, + {115, 116, 117, 118, 119}, + {120, 121, 122, 123, 124}}, + {{125, 126, 127, 128, 129}, + {130, 131, 132, 133, 134}, + {135, 136, 137, 138, 139}, + {140, 141, 142, 143, 144}, + {145, 146, 147, 148, 149}}}}}); + myInput->setBackend("cuda"); + op->associateInput(0, myInput); + op -> setDataType(DataType::Float32); + op -> setBackend("cuda"); + op->computeOutputDims(); + myFC->forward(); + + float* computedOutput = new float[myOutput->size()](); + cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(float) * myOutput->size(), cudaMemcpyDeviceToHost); + + for(int i = 0; i < myOutput->size(); i++){ + const float targetOutput = *(static_cast<float*>(myOutput->getImpl()->rawPtr()) + i); + REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6); + } + + delete[] computedOutput; + } +} \ No newline at end of file