/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #include <catch2/catch_test_macros.hpp> #include <cstddef> // std::size_t #include <cstdint> // std::uint16_t #include <chrono> #include <iostream> #include <memory> #include <numeric> // std::accumulate #include <random> // std::random_device, std::mt19937, std::uniform_real_distribution #include "aidge/data/Tensor.hpp" #include "aidge/backend/cpu/data/TensorImpl.hpp" #include "aidge/operator/Add.hpp" #include "aidge/backend/cpu/operator/AddImpl.hpp" namespace Aidge { TEST_CASE("Test addition of Tensors","[TensorImpl][Add]") { constexpr std::uint16_t NBTRIALS = 10; // Create a random number generator std::random_device rd; std::mt19937 gen(rd()); std::uniform_real_distribution<float> valueDist(0.1f, 1.1f); // Random float distribution between 0 and 1 std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2), std::size_t(10)); std::uniform_int_distribution<int> boolDist(0,1); // Create MatMul Operator std::shared_ptr<Node> mySub = Add(2); auto op = std::static_pointer_cast<OperatorTensor>(mySub-> getOperator()); op->setDataType(DataType::Float32); op->setBackend("cpu"); // Create 2 input Tensors std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(); op->associateInput(0,T0); T0->setDataType(DataType::Float32); T0->setBackend("cpu"); std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>(); op -> associateInput(1,T1); T1->setDataType(DataType::Float32); T1->setBackend("cpu"); // Create results Tensor Tensor Tres{}; Tres.setDataType(DataType::Float32); Tres.setBackend("cpu"); // To measure execution time of 'MatMul_Op::forward()' member function call std::chrono::time_point<std::chrono::system_clock> start; std::chrono::time_point<std::chrono::system_clock> end; std::chrono::duration<double, std::micro> duration{}; std::size_t number_of_operation = 0; for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { // generate 2 random Tensors // handle dimensions, replace some dimensions with '1' to get broadcasting constexpr std::size_t nbDims = 4; std::vector<std::size_t> dims; for (std::size_t i = 0; i < nbDims; ++i) { dims.push_back(dimSizeDist(gen)); } std::vector<std::size_t> dims0 = dims; std::vector<std::size_t> dims1 = dims; std::vector<std::size_t> dimsOut = dims; for (std::size_t i = 0; i < nbDims; ++i) { if (boolDist(gen)) { dims0[i] = 1; } if (boolDist(gen)) { dims1[i] = 1; } dimsOut[i] = (dims0[i] == 1) ? dims1[i] : dims0[i]; } // create arrays and fill them with random values float* array0 = new float[dims0[0]*dims0[1]*dims0[2]*dims0[3]]; float* array1 = new float[dims1[0]*dims1[1]*dims1[2]*dims1[3]]; float* result = new float[dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]]; for (std::size_t i = 0; i < dims0[0]*dims0[1]*dims0[2]*dims0[3]; ++i) { array0[i] = valueDist(gen); } for (std::size_t i = 0; i < dims1[0]*dims1[1]*dims1[2]*dims1[3]; ++i) { array1[i] = valueDist(gen); } // compute true result const std::size_t strides0[nbDims] = {dims0[1]*dims0[2]*dims0[3], dims0[2]*dims0[3], dims0[3], 1}; const std::size_t strides1[nbDims] = {dims1[1]*dims1[2]*dims1[3], dims1[2]*dims1[3], dims1[3], 1}; for (std::size_t a = 0; a < dimsOut[0]; ++a) { for (std::size_t b = 0; b < dimsOut[1]; ++b) { const std::size_t idx0_0 = strides0[0] * ((dims0[0] > 1) ? a : 0) + strides0[1] * ((dims0[1] > 1) ? b : 0); const std::size_t idx1_0 = strides1[0] * ((dims1[0] > 1) ? a : 0) + strides1[1] * ((dims1[1] > 1) ? b : 0); for (std::size_t c = 0; c < dimsOut[2]; ++c) { const std::size_t idx_out = dimsOut[3] * (c + dimsOut[2] * (b + dimsOut[1] * a)); for (std::size_t d = 0; d < dimsOut[3]; ++d) { std::size_t idx0 = idx0_0 + strides0[2] * ((dims0[2] > 1) ? c : 0) + ((dims0[3] > 1) ? d : 0); std::size_t idx1 = idx1_0 + strides1[2] * ((dims1[2] > 1) ? c : 0) + ((dims1[3] > 1) ? d : 0); result[idx_out + d] = array0[idx0] + array1[idx1]; // std::cout << "(" << idx0 << ", " << idx1 << ") -> " << array0[idx0] << " - " << array1[idx1] << " -> " << idx_out + d << std::endl; } } } } // conversion to Aidge::Tensors // input0 T0->resize(dims0); T0->getImpl() -> setRawPtr(array0, dims0[0]*dims0[1]*dims0[2]*dims0[3]); // input1 T1->resize(dims1); T1->getImpl() -> setRawPtr(array1, dims1[0]*dims1[1]*dims1[2]*dims1[3]); // results Tres.resize(dimsOut); Tres.getImpl() -> setRawPtr(result, dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]); Tensor T2 = *T0 + *T1; REQUIRE(T2 == Tres); // no implementation Tensor T3(T1->dims()); REQUIRE_THROWS(*T0 + T3); // // wrong backend // static Registrar<Add_Op> registrarAddImpl_custom("custom", [](const Add_Op& op) { return std::make_unique<AddImpl_cpu>(op); } ); // static Registrar<Tensor> registrarTensorImpl_custom_Int32({"custom", DataType::Int32}, // [] (DeviceIdx_t device, std::vector<DimSize_t> dims) { // return std::make_shared<TensorImpl_cpu<int>>(device, dims); // } // ); // T1.setBackend("custom"); // REQUIRE_THROWS(T0 + T1); // wrong datatype Tensor T4(T1->dims()); T4.setDataType(DataType::Float64); REQUIRE_THROWS(*T0 + T4); } } TEST_CASE("Test substraction of Tensors","[TensorImpl][Sub]") { Tensor T0 = Array3D<int, 2, 2, 2>{{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}}; Tensor T1 = Array3D<int, 2, 2, 2>{{{{7, 1}, {3, 7}}, {{54, 0}, {7, 12}}}}; Tensor T2 = T0 - T1; T2.print(); REQUIRE(T2 == Tensor(Array3D<int, 2, 2, 2>{{{{-6,1},{0,-3}},{{-49,6},{0,-4}}}})); Tensor T3(T1.dims()); REQUIRE_THROWS(T0 - T3); } TEST_CASE("Test multiplication of Tensors","[TensorImpl][Mul]") { Tensor T0 = Array3D<int, 2, 2, 2>{{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}}; Tensor T1 = Array3D<int, 2, 2, 2>{{{{7, 2}, {3, 7}}, {{5, 6}, {7, 8}}}}; Tensor T2 = T0 * T1; T2.print(); REQUIRE(T2 == Tensor(Array3D<int, 2, 2, 2>{{{{7,4},{9,28}},{{25,36},{49,64}}}})); Tensor T3(T1.dims()); REQUIRE_THROWS(T0 * T3); } TEST_CASE("Test division of Tensors","[TensorImpl][Div]") { Tensor T0 = Array3D<int, 2, 2, 2>{{{{7,4},{9,28}},{{25,36},{49,64}}}}; Tensor T1 = Array3D<int, 2, 2, 2>{{{{7, 2}, {3, 7}}, {{5, 6}, {7, 8}}}}; Tensor T2 = T0 / T1; T2.print(); REQUIRE(T2 == Tensor(Array3D<int, 2, 2, 2>{{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}})); Tensor T3(T1.dims()); REQUIRE_THROWS(T0 / T3); } } // namespace Aidge