/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #include <cassert> #include <numeric> // std::accumulate #include <functional> // std::multiplies #include "aidge/operator/Slice.hpp" #include "aidge/backend/cpu/operator/SliceImpl.hpp" #include "aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp" #include "aidge/utils/Types.h" #include <vector> #include <cassert> #include <tuple> Aidge::NbElts_t Aidge::SliceImpl_cpu::getNbRequiredData(const Aidge::IOIndex_t /*inputIdx*/) const { assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "requires valid input"); // Requires the whole tensors const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(); return std::accumulate(inputDims.begin(), inputDims.end(), static_cast<NbElts_t>(1), std::multiplies<NbElts_t>()); } Aidge::NbElts_t Aidge::SliceImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { return 0; } Aidge::NbElts_t Aidge::SliceImpl_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t>& inputsSize) const { (void)outputIdx; (void)inputsSize; const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(); return std::accumulate(outputDims.begin(), outputDims.end(), static_cast<NbElts_t>(1), std::multiplies<NbElts_t>()); } Aidge::NbElts_t Aidge::SliceImpl_cpu::getNbConsumedData(const Aidge::IOIndex_t /*inputIdx*/) const { return mNbConsumedData[0]; } Aidge::NbElts_t Aidge::SliceImpl_cpu::getNbProducedData(const Aidge::IOIndex_t /*outputIdx*/) const { return mNbProducedData[0]; } void Aidge::SliceImpl_cpu::updateConsummerProducer() { // each input is consumed by the minimum amount for a forward pass mNbConsumedData[0] += getNbRequiredData(0); mNbProducedData[0] += getRequiredMemory(0, {}); } void Aidge::SliceImpl_cpu::forward() { // FIXME: uncomment the following code once memory handling will work assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = Registrar<SliceImplForward_cpu>::create( {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType()}); // Call kernel kernelFunc(dynamic_cast<const Slice_Op&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr() ); // each input is consumed by the minimum amount for a forward pass mNbConsumedData[0] += getNbRequiredData(0); mNbProducedData[0] += getRequiredMemory(0, {}); } void Aidge::SliceImpl_cpu::backward() { fmt::print("Not implemented yet.\n"); }