/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #include <memory> #include <vector> #include "aidge/data/Tensor.hpp" #include "aidge/operator/ReLU.hpp" #include "aidge/utils/Types.h" #include "aidge/backend/cpu/data/GetCPUPtr.h" #include "aidge/utils/ErrorHandling.hpp" #include "aidge/backend/cpu/operator/ReLUImpl.hpp" #include "aidge/backend/cpu/operator/ReLUImpl_kernels.hpp" template <> void Aidge::ReLUImpl_cpu::forward() { const ReLU_Op& op_ = dynamic_cast<const ReLU_Op&>(mOp); std::shared_ptr<Tensor> in0 = op_.getInput(0); std::shared_ptr<Tensor> out0 = op_.getOutput(0); AIDGE_ASSERT(in0, "missing input #0"); // Find the correct kernel type const auto impl = Registrar<ReLUImpl_cpu>::create(getBestMatch(getRequiredSpec())); // Call kernel impl.forward(in0->size(), getCPUPtr(mOp.getRawInput(0)), getCPUPtr(mOp.getRawOutput(0))); } template <> void Aidge::ReLUImpl_cpu::backward() { const ReLU_Op& op_ = dynamic_cast<const ReLU_Op&>(mOp); std::shared_ptr<Tensor> in0 = op_.getInput(0); std::shared_ptr<Tensor> out0 = op_.getOutput(0); std::shared_ptr<Tensor> gra_int0 = op_.getInput(0)->grad(); std::shared_ptr<Tensor> gra_out0 = op_.getOutput(0)->grad(); AIDGE_ASSERT(out0, "missing output #0 for current {} operator", op_.type()); // Find the correct kernel type const auto impl = Registrar<ReLUImpl_cpu>::create(getBestMatch(getRequiredSpec())); // Call kernel impl.backward(gra_int0->size(), getCPUPtr(in0), getCPUPtr(gra_out0), getCPUPtr(gra_int0)); }