/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #include "operator/BatchNormImpl.hpp" #include <cassert> #include <numeric> #include <thread> #include <vector> #include "operator/BatchNormImpl_forward_kernels.hpp" #include "operator/BatchNorm.hpp" #include "utils/Types.h" Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const { assert(mOp.getInput(inputIdx) && "requires valid input"); // Requires the whole tensors const auto &inputDims = std::static_pointer_cast<Tensor>(mOp.getInput(inputIdx))->dims(); return std::accumulate(inputDims.begin(), inputDims.end(), Aidge::NbElts_t(1), std::multiplies<NbElts_t>()); } Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const { // for the direct convolution algorithm, convolutions can be in-place, if // there is no padding! return 0; } Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t> &inputsSize) const { // Requires the whole tensors, regardless of available data on inputs assert(outputIdx == 0 && "operator has only one output"); const auto &outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims(); return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>()); } Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getNbConsumedData(Aidge::IOIndex_t inputIdx) const { assert(static_cast<std::size_t>(inputIdx) < mNbConsumedData.size()); return mNbConsumedData[static_cast<std::size_t>(inputIdx)]; } Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getNbProducedData(Aidge::IOIndex_t outputIdx) const { assert((outputIdx == 0) && (static_cast<std::size_t>(outputIdx) < mNbProducedData.size())); return mNbProducedData[static_cast<std::size_t>(outputIdx)]; } void Aidge::BatchNormImpl2D_cpu::forward() { // FIXME: uncomment the following code once memory handling will work assert(mOp.getInput(0) && "missing input #0"); assert(mOp.getInput(1) && "missing input #1"); assert(mOp.getInput(2) && "missing input #2"); assert(mOp.getInput(3) && "missing input #3"); assert(mOp.getInput(4) && "missing input #4"); assert(mOp.getOutput(0)->nbDims() == 4); // Find the correct kernel type auto kernelFunc = Registrar<BatchNormImpl2DForward_cpu>::create({mOp.getInput(0)->dataType(), mOp.getInput(1)->dataType(), mOp.getOutput(0)->dataType()}); // Call kernel kernelFunc(mOp.getParams(), mOp.getInput(0)->dims<4>(), mOp.getInput(0)->getImpl()->rawPtr(), mOp.getInput(1)->getImpl()->rawPtr(), mOp.getInput(2)->getImpl()->rawPtr(), mOp.getInput(3)->getImpl()->rawPtr(), mOp.getInput(4)->getImpl()->rawPtr(), mOp.getOutput(0)->getImpl()->rawPtr(), true); // Update producer-consumer data for (std::size_t inputIdx = 0; inputIdx < mNbConsumedData.size(); ++inputIdx) mNbConsumedData[inputIdx] += getNbRequiredData(static_cast<IOIndex_t>(inputIdx)); // each input is consumed by the minimum // amount for a forward pass mNbProducedData[0] += getRequiredMemory(0, {}); } void Aidge::BatchNormImpl2D_cpu::backward() { printf("Not implemented yet.\n"); }