/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #include <cassert> #include <chrono> // std::chrono::milliseconds #include <numeric> // std::accumulate #include <thread> // std::this_thread::sleep_for #include "aidge/operator/Softmax.hpp" #include "aidge/operator/SoftmaxImpl.hpp" #include "aidge/operator/SoftmaxImpl_forward_kernels.hpp" #include "aidge/utils/Types.h" #include <numeric> #include <vector> // FIXME: replace whole Tensor with minimum needed data quantity Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getNbRequiredData(Aidge::IOIndex_t /*inputIdx*/) const { assert(mOp.getInput(0) && "requires valid input"); // Requires the whole tensors const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getInput(0))->dims(); return std::accumulate(inputDims.begin(), inputDims.end(), static_cast<NbElts_t>(1), std::multiplies<NbElts_t>()); } Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { // for the direct convolution algorithm, convolutions can be in-place, if there is no padding! return 0; } Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getRequiredMemory(__attribute__((unused)) const Aidge::IOIndex_t outputIdx, __attribute__((unused)) const std::vector<Aidge::DimSize_t> &inputsSize) const { const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims(); return std::accumulate(outputDims.begin(), outputDims.end(), static_cast<NbElts_t>(1), std::multiplies<NbElts_t>()); } Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getNbConsumedData(Aidge::IOIndex_t /*inputIdx*/) const { return mNbConsumedData[0]; } Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getNbProducedData(Aidge::IOIndex_t /*outputIdx*/) const { return mNbProducedData[0]; } void Aidge::SoftmaxImpl_cpu::forward() { // FIXME: uncomment the following code once memory handling will work assert(mOp.getInput(0) && "missing input #0"); assert(mOp.getInput(0)->nbDims()>1); // Find the correct kernel type auto kernelFunc = Registrar<SoftmaxImplForward_cpu>::create({ mOp.getInput(0)->dataType(), mOp.getOutput(0)->dataType()}); DimSize_t batchSize = mOp.getInput(0)->dims()[0]; DimSize_t channelSize = mOp.getInput(0)->dims()[1]; DimSize_t featureSize = mOp.getInput(0)->sizeM1()/channelSize; // Call kernel kernelFunc(batchSize, channelSize, featureSize, mOp.getInput(0)->getImpl()->rawPtr(), mOp.getOutput(0)->getImpl()->rawPtr()); mNbConsumedData[0]+= getNbRequiredData(0); // each input is consumed by the minimum amount for a forward pass mNbProducedData[0]+= getRequiredMemory(0, {}); } void Aidge::SoftmaxImpl_cpu::backward() { printf("Not implemented yet.\n"); }