diff --git a/aidge_backend_cpu/unit_tests/test_recipies.py b/aidge_backend_cpu/unit_tests/test_recipies.py index 60949adf245f4f4a7ed316879fb307131f70739a..841c15590e9dac7596958b8392c99948978723c5 100644 --- a/aidge_backend_cpu/unit_tests/test_recipies.py +++ b/aidge_backend_cpu/unit_tests/test_recipies.py @@ -49,24 +49,24 @@ class test_recipies(unittest.TestCase): np_shift = np.array([0.05]).astype(np.float32) np_mean = np.array([0.05]).astype(np.float32) np_var = np.array([0.05]).astype(np.float32) - conv.input(1)[0].get_operator().set_output_tensor(aidge_core.Tensor(np_weights)) - conv.input(2)[0].get_operator().set_output_tensor(aidge_core.Tensor(np_bias)) - bn.input(1)[0].get_operator().set_output_tensor(aidge_core.Tensor(np_scale)) - bn.input(2)[0].get_operator().set_output_tensor(aidge_core.Tensor(np_shift)) - bn.input(3)[0].get_operator().set_output_tensor(aidge_core.Tensor(np_mean)) - bn.input(4)[0].get_operator().set_output_tensor(aidge_core.Tensor(np_var)) + conv.input(1)[0].get_operator().set_output(0, aidge_core.Tensor(np_weights)) + conv.input(2)[0].get_operator().set_output(0, aidge_core.Tensor(np_bias)) + bn.input(1)[0].get_operator().set_output(0, aidge_core.Tensor(np_scale)) + bn.input(2)[0].get_operator().set_output(0, aidge_core.Tensor(np_shift)) + bn.input(3)[0].get_operator().set_output(0, aidge_core.Tensor(np_mean)) + bn.input(4)[0].get_operator().set_output(0, aidge_core.Tensor(np_var)) scheduler0 = aidge_core.SequentialScheduler(graph_view) scheduler0.forward() for outNode in graph_view.get_output_nodes(): - output_aidge0 = outNode.get_operator().output(0) + output_aidge0 = outNode.get_operator().get_output(0) aidge_core.fuse_batchnorm(graph_view) scheduler1 = aidge_core.SequentialScheduler(graph_view) scheduler1.forward() for outNode in graph_view.get_output_nodes(): - output_aidge1 = outNode.get_operator().output(0) + output_aidge1 = outNode.get_operator().get_output(0) self.assertTrue(aidge_core.approx_eq(output_aidge0, output_aidge1, 0.000001, 0.0001)) diff --git a/aidge_backend_cpu/unit_tests/test_scheduler.py b/aidge_backend_cpu/unit_tests/test_scheduler.py index 3449ff513ef618e24788419c835b7277a1e751f1..2f174efed32fc814010ff61cd42c1bae1105674e 100644 --- a/aidge_backend_cpu/unit_tests/test_scheduler.py +++ b/aidge_backend_cpu/unit_tests/test_scheduler.py @@ -22,30 +22,30 @@ class test_scheduler(unittest.TestCase): gv.add(relu) gv.add(input_node) + input_node.add_child(relu) + gv.set_datatype(aidge_core.DataType.Int32) gv.set_backend("cpu") - input_node.add_child(relu) - scheduler = aidge_core.SequentialScheduler(gv) scheduler.forward() - out_tensor = relu.get_operator().output(0) + out_tensor = relu.get_operator().get_output(0) expected_out = [0,0,0,0,1,2] for i in range(len(expected_out)): self.assertEqual(expected_out[i], out_tensor[i]) def test_sequential_scheduling(self): - input_data = np.array([]).astype(np.float32) + input_data = np.array([0]).astype(np.float32) input_tensor = aidge_core.Tensor(input_data) input_node = aidge_core.Producer(input_tensor, "X") graph_view = aidge_core.sequential([ - aidge_core.FC(50, name='0'), - aidge_core.FC(50, name='1'), - aidge_core.FC(10, name='2'), + aidge_core.FC(1, 50, name='0'), + aidge_core.FC(50, 50, name='1'), + aidge_core.FC(50, 10, name='2'), ]) EXPECTED_SCHEDULE = ['0', '1', '2'] @@ -64,14 +64,14 @@ class test_scheduler(unittest.TestCase): def test_parallel_scheduling(self): - input_data = np.array([]).astype(np.float32) + input_data = np.array([0]).astype(np.float32) input_tensor = aidge_core.Tensor(input_data) input_node = aidge_core.Producer(input_tensor, "X") graph_view = aidge_core.sequential([ - aidge_core.FC(50, name='0'), - aidge_core.parallel([aidge_core.FC(50, name='1'), aidge_core.FC(50, name='3')]), - aidge_core.Add(name='2'), + aidge_core.FC(1, 50, name='0'), + aidge_core.parallel([aidge_core.FC(50, 50, name='1'), aidge_core.FC(50, 50, name='3')]), + aidge_core.Add(2, name='2'), ]) EXPECTED_SCHEDULE = [['0', '1', '3', '2'], ['0', '3', '1', '2']] # Both scheduling are valid ! diff --git a/include/aidge/backend/cpu.hpp b/include/aidge/backend/cpu.hpp index 5a7ac3958b76e94c8389b0287fdac40c8c3a5ad8..f78598057cafe0b5b02d268bd5a73ede5a2981d8 100644 --- a/include/aidge/backend/cpu.hpp +++ b/include/aidge/backend/cpu.hpp @@ -17,6 +17,7 @@ #include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp" #include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp" #include "aidge/backend/cpu/operator/BatchNormImpl.hpp" +#include "aidge/backend/cpu/operator/ConcatImpl.hpp" #include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp" #include "aidge/backend/cpu/operator/ConvImpl.hpp" #include "aidge/backend/cpu/operator/DivImpl.hpp" @@ -29,6 +30,7 @@ #include "aidge/backend/cpu/operator/ProducerImpl.hpp" #include "aidge/backend/cpu/operator/ReLUImpl.hpp" #include "aidge/backend/cpu/operator/ScalingImpl.hpp" +#include "aidge/backend/cpu/operator/SliceImpl.hpp" #include "aidge/backend/cpu/operator/SqrtImpl.hpp" #include "aidge/backend/cpu/operator/SoftmaxImpl.hpp" #include "aidge/backend/cpu/operator/SubImpl.hpp" diff --git a/include/aidge/backend/cpu/operator/AddImpl.hpp b/include/aidge/backend/cpu/operator/AddImpl.hpp index 9dbd21501462c010384248544b81bb9f26346604..806bbb02d760dbdec58df137641d4c211443039e 100644 --- a/include/aidge/backend/cpu/operator/AddImpl.hpp +++ b/include/aidge/backend/cpu/operator/AddImpl.hpp @@ -23,87 +23,39 @@ namespace Aidge { // class Add_Op<2>; // compute kernel registry for forward and backward -template <DimIdx_t NUM> -class AddImplForward_cpu; -template <DimIdx_t NUM> -class AddImplBackward_cpu; - -template <> -class AddImplForward_cpu<1> - : public Registrable<AddImplForward_cpu<1>, std::tuple<DataType, DataType>, void(const std::size_t, const void*, void*)> {}; -template <> -class AddImplBackward_cpu<1> - : public Registrable<AddImplBackward_cpu<1>, std::tuple<DataType, DataType>, void(const std::size_t, const void*, void*)> {}; - -template <> -class AddImplForward_cpu<2> : public Registrable<AddImplForward_cpu<2>, std::tuple<DataType, DataType, DataType>, - void(const std::size_t, const void*, const void*, void*)> {}; -template <> -class AddImplBackward_cpu<2> : public Registrable<AddImplBackward_cpu<2>, std::tuple<DataType, DataType, DataType>, - void(const std::size_t, const void*, const void*, void*)> {}; - -template <> -class AddImplForward_cpu<3> : public Registrable<AddImplForward_cpu<3>, std::tuple<DataType, DataType, DataType, DataType>, - void(const std::size_t, const void*, const void*, const void*, void*)> { -}; -template <> -class AddImplBackward_cpu<3> - : public Registrable<AddImplBackward_cpu<3>, std::tuple<DataType, DataType, DataType, DataType>, - void(const std::size_t, const void*, const void*, const void*, void*)> {}; +class AddImplForward_cpu + : public Registrable<AddImplForward_cpu, std::tuple<DataType, DataType>, void(const std::size_t, const std::vector<const void*>, void*)> {}; + +class AddImplBackward_cpu + : public Registrable<AddImplBackward_cpu, std::tuple<DataType, DataType>, void(const std::size_t, const std::vector<const void*>, void*)> {}; + -template <DimIdx_t NUM> class AddImpl_cpu : public OperatorImpl { public: - AddImpl_cpu(const Add_Op<NUM>& op) : OperatorImpl(op) {} + AddImpl_cpu(const Add_Op& op) : OperatorImpl(op) {} - static std::unique_ptr<AddImpl_cpu<NUM>> create(const Add_Op<NUM>& op) { - return std::make_unique<AddImpl_cpu<NUM>>(op); + static std::unique_ptr<AddImpl_cpu> create(const Add_Op& op) { + return std::make_unique<AddImpl_cpu>(op); } -}; -template <> -class AddImpl_cpu<1> : public OperatorImpl { public: - AddImpl_cpu(const Add_Op<1>& op) : OperatorImpl(op) {} - - static std::unique_ptr<AddImpl_cpu<1>> create(const Add_Op<1>& op) { - return std::make_unique<AddImpl_cpu<1>>(op); - } + NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final; NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final; - void forward() override; -}; -template <> -class AddImpl_cpu<2> : public OperatorImpl { -public: - AddImpl_cpu(const Add_Op<2>& op) : OperatorImpl(op) {} - - static std::unique_ptr<AddImpl_cpu<2>> create(const Add_Op<2>& op) { - return std::make_unique<AddImpl_cpu<2>>(op); - } + NbElts_t getRequiredMemory(const IOIndex_t outputIdx, const std::vector<DimSize_t>& /*inputsSize*/) const override final; - NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final; - void forward() override; -}; + NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final; -template <> -class AddImpl_cpu<3> : public OperatorImpl { -public: - AddImpl_cpu(const Add_Op<3>& op) : OperatorImpl(op) {} + NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final; - static std::unique_ptr<AddImpl_cpu<3>> create(const Add_Op<3>& op) { - return std::make_unique<AddImpl_cpu<3>>(op); - } + void updateConsummerProducer() override final; - NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final; void forward() override; }; namespace { -static Registrar<Add_Op<1>> registrarAddImpl1I_cpu("cpu", Aidge::AddImpl_cpu<1>::create); -static Registrar<Add_Op<2>> registrarAddImpl2I_cpu("cpu", Aidge::AddImpl_cpu<2>::create); -static Registrar<Add_Op<3>> registrarAddImpl3I_cpu("cpu", Aidge::AddImpl_cpu<3>::create); +static Registrar<Add_Op> registrarAddImpl_cpu("cpu", Aidge::AddImpl_cpu::create); } // namespace } // namespace Aidge diff --git a/include/aidge/backend/cpu/operator/AddImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/AddImpl_forward_kernels.hpp index 221e36dcfac44e21d1b1a35674ca21403b4b57ab..198bcbacc395edf2709fa229828e2228554e6fd2 100644 --- a/include/aidge/backend/cpu/operator/AddImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/AddImpl_forward_kernels.hpp @@ -18,70 +18,30 @@ namespace Aidge { -template <class I1, class O> -void AddImpl1I_cpu_forward_kernel(const std::size_t inputLength, const void* input1_, void* output_) { +template <class I, class O> +void AddImpl_cpu_forward_kernel(const std::size_t inputLength, const std::vector<const void*> inputs_, void* output_) { // FIXME: missing Add attributes as arguments - const I1* input1 = static_cast<const I1*>(input1_); - O* output = static_cast<O*>(output_); - - for (std::size_t oIndex = 0; oIndex < inputLength; ++oIndex) { - output[oIndex] = input1[oIndex]; - } -} - -template <class I1, class I2, class O> -void AddImpl2I_cpu_forward_kernel(const std::size_t inputLength, const void* input1_, const void* input2_, - void* output_) { - // FIXME: missing Add attributes as arguments - const I1* input1 = static_cast<const I1*>(input1_); - const I2* input2 = static_cast<const I2*>(input2_); - O* output = static_cast<O*>(output_); - - for (std::size_t oIndex = 0; oIndex < inputLength; ++oIndex) { - output[oIndex] = input1[oIndex] + input2[oIndex]; + std::vector<const I*> inputs; + for (const auto& input_ : inputs_) { + inputs.push_back(static_cast<const I*>(input_)); } -} - -template <class I1, class I2, class I3, class O> -void AddImpl3I_cpu_forward_kernel(const std::size_t inputLength, const void* input1_, const void* input2_, - const void* input3_, void* output_) { - // FIXME: missing Add attributes as arguments - const I1* input1 = static_cast<const I1*>(input1_); - const I2* input2 = static_cast<const I2*>(input2_); - const I3* input3 = static_cast<const I3*>(input3_); O* output = static_cast<O*>(output_); - for (std::size_t oIndex = 0; oIndex < inputLength; ++oIndex) { - output[oIndex] = input1[oIndex] + input2[oIndex] + input3[oIndex]; - } + for (std::size_t iIndex = 0; iIndex < inputs.size(); ++iIndex) { + for (std::size_t oIndex = 0; oIndex < inputLength; ++oIndex) { + output[oIndex] += inputs[iIndex][oIndex]; + } + } } namespace { -static Registrar<AddImplForward_cpu<1>> registrarAddImpl1IForward_cpu_Float32( - {DataType::Float32, DataType::Float32}, Aidge::AddImpl1I_cpu_forward_kernel<float, float>); -static Registrar<AddImplForward_cpu<1>> registrarAddImpl1IForward_cpu_Int32( - {DataType::Int32, DataType::Int32}, Aidge::AddImpl1I_cpu_forward_kernel<int, int>); -static Registrar<AddImplForward_cpu<1>> registrarAddImpl1IForward_cpu_Float64( - {DataType::Float64, DataType::Float64}, Aidge::AddImpl1I_cpu_forward_kernel<double, double>); - -static Registrar<AddImplForward_cpu<2>> registrarAddImpl2IForward_cpu_Float32( - {DataType::Float32, DataType::Float32, DataType::Float32}, - Aidge::AddImpl2I_cpu_forward_kernel<float, float, float>); -static Registrar<AddImplForward_cpu<2>> registrarAddImpl2IForward_cpu_Int32( - {DataType::Int32, DataType::Int32, DataType::Int32}, Aidge::AddImpl2I_cpu_forward_kernel<int, int, int>); -static Registrar<AddImplForward_cpu<2>> registrarAddImpl2IForward_cpu_Float64( - {DataType::Float64, DataType::Float64, DataType::Float64}, Aidge::AddImpl2I_cpu_forward_kernel<double, double, double>); - -static Registrar<AddImplForward_cpu<3>> registrarAddImpl3IForward_cpu_Float32( - {DataType::Float32, DataType::Float32, DataType::Float32, DataType::Float32}, - Aidge::AddImpl3I_cpu_forward_kernel<float, float, float, float>); -static Registrar<AddImplForward_cpu<3>> registrarAddImpl3IForward_cpu_Int32( - {DataType::Int32, DataType::Int32, DataType::Int32, DataType::Int32}, - Aidge::AddImpl3I_cpu_forward_kernel<int, int, int, int>); -static Registrar<AddImplForward_cpu<3>> registrarAddImpl3IForward_cpu_Float64( - {DataType::Float64, DataType::Float64, DataType::Float64, DataType::Float64}, - Aidge::AddImpl3I_cpu_forward_kernel<double, double, double, double>); +static Registrar<AddImplForward_cpu> registrarAddImplForward_cpu_Float32( + {DataType::Float32, DataType::Float32}, Aidge::AddImpl_cpu_forward_kernel<float, float>); +static Registrar<AddImplForward_cpu> registrarAddImplForward_cpu_Int32( + {DataType::Int32, DataType::Int32}, Aidge::AddImpl_cpu_forward_kernel<int, int>); +static Registrar<AddImplForward_cpu> registrarAddImplForward_cpu_Float64( + {DataType::Float64, DataType::Float64}, Aidge::AddImpl_cpu_forward_kernel<double, double>); } // namespace } // namespace Aidge -#endif /* AIDGE_CPU_OPERATOR_ADDIMPL_CPU_FORWARD_KERNEL_H_ */ +#endif /* AIDGE_CPU_OPERATOR_ADDIMPL_CPU_FORWARD_KERNEL_H_ */ \ No newline at end of file diff --git a/include/aidge/backend/cpu/operator/ConcatImpl.hpp b/include/aidge/backend/cpu/operator/ConcatImpl.hpp new file mode 100644 index 0000000000000000000000000000000000000000..a5e0c56e856217509445844be2ae5631bad05728 --- /dev/null +++ b/include/aidge/backend/cpu/operator/ConcatImpl.hpp @@ -0,0 +1,72 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CPU_OPERATOR_CONCATIMPL_H_ +#define AIDGE_CPU_OPERATOR_CONCATIMPL_H_ + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/operator/Concat.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" +#include <memory> +#include <vector> + +namespace Aidge { +// class Concat_Op<2>; + +// compute kernel registry for forward and backward +class ConcatImplForward_cpu + : public Registrable<ConcatImplForward_cpu, std::tuple<DataType, DataType>, void(const Concat_Op::Attrs&, + const std::vector<DimSize_t>, + const std::vector<DimSize_t>&, + const std::vector<const void*>, + void*)> {}; + +class ConcatImplBackward_cpu + : public Registrable<ConcatImplBackward_cpu, std::tuple<DataType, DataType>, void(const Concat_Op::Attrs&, + const std::vector<DimSize_t>, + const std::vector<DimSize_t>&, + const std::vector<const void*>, + void*)> {}; + + +class ConcatImpl_cpu : public OperatorImpl { +public: + ConcatImpl_cpu(const Concat_Op& op) : OperatorImpl(op) {} + + static std::unique_ptr<ConcatImpl_cpu> create(const Concat_Op& op) { + return std::make_unique<ConcatImpl_cpu>(op); + } + +public: + NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final; + + NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final; + + NbElts_t getRequiredMemory(const IOIndex_t outputIdx, const std::vector<DimSize_t>& /*inputsSize*/) const override final; + + NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final; + + NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final; + + void updateConsummerProducer() override final; + + void forward() override; + + void backward() override; +}; + +namespace { +static Registrar<Concat_Op> registrarConcatImpl_cpu("cpu", Aidge::ConcatImpl_cpu::create); +} // namespace +} // namespace Aidge + +#endif /* AIDGE_CPU_OPERATOR_CONCATIMPL_H_ */ diff --git a/include/aidge/backend/cpu/operator/ConcatImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ConcatImpl_forward_kernels.hpp new file mode 100644 index 0000000000000000000000000000000000000000..b76f384bd73e874a194cddd0fc2e146ba6ff872d --- /dev/null +++ b/include/aidge/backend/cpu/operator/ConcatImpl_forward_kernels.hpp @@ -0,0 +1,78 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CPU_OPERATOR_CONCATIMPL_FORWARD_KERNEL_H_ +#define AIDGE_CPU_OPERATOR_CONCATIMPL_FORWARD_KERNEL_H_ + +#include <algorithm> +#include <numeric> +#include <cstddef> +#include <vector> + +#include "aidge/backend/cpu/operator/ConcatImpl.hpp" +#include "aidge/data/Data.hpp" +#include "aidge/operator/Concat.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +template <class I, class O> +void ConcatImpl_cpu_forward_kernel(const Concat_Op::Attrs& attrs, + const std::vector<DimSize_t>& dimsFirstInput, + const std::vector<DimSize_t>& concatAxisValues, + const std::vector<const void*>& inputs_, + void* output_) +{ + // FIXME: missing Concat attributes as arguments + std::vector<const I*> inputs; + for (const auto& input_ : inputs_) { + inputs.push_back(static_cast<const I*>(input_)); + } + O* output = static_cast<O*>(output_); + + DimSize_t outputAxisValue = std::accumulate(concatAxisValues.begin(), concatAxisValues.end(), 0); + + DimSize_t prodDimLower = 1; + for (DimIdx_t i = 0; i < std::get<0>(attrs); ++i) { + prodDimLower *= dimsFirstInput[i]; + } + DimSize_t prodDimHigher = 1; + for (DimIdx_t i = std::get<0>(attrs) + 1; static_cast<std::size_t>(i) < dimsFirstInput.size(); + ++i) { + prodDimHigher *= dimsFirstInput[i]; + } + + std::size_t oIndexStart = 0; + std::size_t oIndex = 0; + for (std::size_t inputId = 0; inputId < inputs.size(); ++inputId) { + oIndex = oIndexStart; + const DimSize_t iOffset = prodDimHigher*concatAxisValues[inputId]; + for (std::size_t iIndex = 0; iIndex < prodDimLower; ++iIndex) { + std::copy(inputs[inputId] + iIndex*iOffset, inputs[inputId] + (iIndex+1)*iOffset, output + oIndex); + oIndex += prodDimHigher*outputAxisValue; + } + oIndexStart += concatAxisValues[inputId]*prodDimHigher; + } +} + +namespace { +static Registrar<ConcatImplForward_cpu> registrarConcatImplForward_cpu_Float32( + {DataType::Float32, DataType::Float32}, Aidge::ConcatImpl_cpu_forward_kernel<float, float>); +static Registrar<ConcatImplForward_cpu> registrarConcatImplForward_cpu_Int32( + {DataType::Int32, DataType::Int32}, Aidge::ConcatImpl_cpu_forward_kernel<int, int>); +static Registrar<ConcatImplForward_cpu> registrarConcatImplForward_cpu_Float64( + {DataType::Float64, DataType::Float64}, + Aidge::ConcatImpl_cpu_forward_kernel<double, double>); +} // namespace +} // namespace Aidge + +#endif /* AIDGE_CPU_OPERATOR_CONCATIMPL_CPU_FORWARD_KERNEL_H_ */ diff --git a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp index 5aa29ac55740d46bba873bb9d85a04cd004cc3bd..f40dfee00ee940e6bc73a2fc337bbee61607d17f 100644 --- a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp @@ -17,6 +17,7 @@ #include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp" #include "aidge/utils/Types.h" #include <cmath> +#include <cstddef> #include <array> #include <algorithm> diff --git a/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp index 7d31dd5a8545f6276f9fd40a5deb52d02e6dc35f..5258c4c3e7376c3883b119503ee9e6765de844d5 100644 --- a/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp @@ -9,8 +9,10 @@ * ********************************************************************************/ -#ifndef __AIDGE_CPU_OPERATOR_ScalingIMPL_FORWARD_KERNEL_H__ -#define __AIDGE_CPU_OPERATOR_ScalingIMPL_FORWARD_KERNEL_H__ +#ifndef AIDGE_CPU_OPERATOR_SCALINGIMPL_FORWARD_KERNEL_H +#define AIDGE_CPU_OPERATOR_SCALINGIMPL_FORWARD_KERNEL_H + +#include <cmath> #include "aidge/utils/Registrar.hpp" @@ -61,7 +63,7 @@ const O& clamp(const O& x, const O& min, const O& max) template<class O> O saturate(O value, std::size_t quantizedNbBits, bool isOutputUnsigned) { assert(quantizedNbBits > 0); - + const O min = isOutputUnsigned?0: -(1ll << (quantizedNbBits - 1ll)); const O max = isOutputUnsigned?(1ll << quantizedNbBits) - 1ll: @@ -101,4 +103,4 @@ static Registrar<ScalingImplForward_cpu> registrarScalingImplForward_cpu_Float64 } // namespace } // namespace Aidge -#endif /* __AIDGE_CPU_OPERATOR_ScalingIMPL_FORWARD_KERNEL_H__ */ +#endif /* AIDGE_CPU_OPERATOR_SCALINGIMPL_FORWARD_KERNEL_H */ diff --git a/include/aidge/backend/cpu/operator/SliceImpl.hpp b/include/aidge/backend/cpu/operator/SliceImpl.hpp new file mode 100644 index 0000000000000000000000000000000000000000..06c7cf29638c2ef0881db111702eeba83863a9e2 --- /dev/null +++ b/include/aidge/backend/cpu/operator/SliceImpl.hpp @@ -0,0 +1,215 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CPU_OPERATOR_SLICEIMPL_H_ +#define AIDGE_CPU_OPERATOR_SLICEIMPL_H_ + +#include <memory> +#include <tuple> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/operator/Slice.hpp" + +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { +// class Slice_Op; + +// compute kernel registry for forward and backward +template <DimIdx_t DIM> +class SliceImplForward_cpu + : public Registrable<SliceImplForward_cpu<DIM>, std::tuple<DataType>, + void(const typename Slice_Op<DIM>::Attrs&, + const std::array<std::size_t, DIM>, + const void*, + void*)> {}; +template <DimIdx_t DIM> +class SliceImplBackward_cpu + : public Registrable<SliceImplBackward_cpu<DIM>, std::tuple<DataType>, + void(const typename Slice_Op<DIM>::Attrs&, + const std::array<std::size_t, DIM>, + const void*, + void*)> {}; + +template <DimIdx_t DIM> +class SliceImpl_cpu : public OperatorImpl { + public: + SliceImpl_cpu(const Slice_Op<DIM>& op) : OperatorImpl(op) {} + + static std::unique_ptr<SliceImpl_cpu<DIM>> create(const Slice_Op<DIM>& op) { + return std::make_unique<SliceImpl_cpu<DIM>>(op); + } + + public: + NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final { + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "requires valid input"); + + // Requires the whole tensors + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(); + + return std::accumulate(inputDims.begin(), inputDims.end(), static_cast<NbElts_t>(1), + std::multiplies<NbElts_t>()); + } + NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final { return 0; } + NbElts_t getRequiredMemory(const IOIndex_t outputIdx, + const std::vector<DimSize_t>& inputsSize) const override final { + (void)outputIdx; + (void)inputsSize; + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(); + return std::accumulate(outputDims.begin(), outputDims.end(), static_cast<NbElts_t>(1), + std::multiplies<NbElts_t>()); + } + NbElts_t getNbConsumedData(const IOIndex_t /*inputIdx*/) const override final { + return mNbConsumedData[0]; + } + NbElts_t getNbProducedData(const IOIndex_t /*outputIdx*/) const override final { + return mNbProducedData[0]; + } + void updateConsummerProducer() override final { + // each input is consumed by the minimum amount for a forward pass + mNbConsumedData[0] += getNbRequiredData(0); + + mNbProducedData[0] += getRequiredMemory(0, {}); + } + + void forward() override { + // FIXME: uncomment the following code once memory handling will work + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + + // Find the correct kernel type + auto kernelFunc = Registrar<SliceImplForward_cpu<DIM>>::create( + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType()}); + + // Call kernel + kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<DIM>(), + std::get<1>(std::static_pointer_cast<const Slice_Op<DIM>&>(mOp).getStaticAttributes()), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr() + ); + + // each input is consumed by the minimum amount for a forward pass + mNbConsumedData[0] += getNbRequiredData(0); + + mNbProducedData[0] += getRequiredMemory(0, {}); + } + + void backward() override { printf("Not implemented yet.\n"); } +}; + +/******************************************************************************/ + +template <> +class SliceImpl_cpu<1> : public OperatorImpl { +public: + SliceImpl_cpu(const Slice_Op<1>& op) : OperatorImpl(op) {} + + static std::unique_ptr<SliceImpl_cpu<1>> create(const Slice_Op<1>& op) { + return std::make_unique<SliceImpl_cpu<1>>(op); + } + +public: + NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getRequiredMemory(const IOIndex_t outputIdx, + const std::vector<DimSize_t>& inputsSize) const override final; + NbElts_t getNbConsumedData(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final; + void updateConsummerProducer() override final; + + void forward() override; + void backward() override; +}; + +/******************************************************************************/ + +template <> +class SliceImpl_cpu<2> : public OperatorImpl { + public: + SliceImpl_cpu(const Slice_Op<2>& op) : OperatorImpl(op) {} + + static std::unique_ptr<SliceImpl_cpu<2>> create(const Slice_Op<2>& op) { + return std::make_unique<SliceImpl_cpu<2>>(op); + } + + public: + NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getRequiredMemory(const IOIndex_t outputIdx, + const std::vector<DimSize_t>& inputsSize) const override final; + NbElts_t getNbConsumedData(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final; + void updateConsummerProducer() override final; + + void forward() override; + void backward() override; +}; + +/******************************************************************************/ + +template <> +class SliceImpl_cpu<3> : public OperatorImpl { + public: + SliceImpl_cpu(const Slice_Op<3>& op) : OperatorImpl(op) {} + + static std::unique_ptr<SliceImpl_cpu<3>> create(const Slice_Op<3>& op) { + return std::make_unique<SliceImpl_cpu<3>>(op); + } + + public: + NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getRequiredMemory(const IOIndex_t outputIdx, + const std::vector<DimSize_t>& inputsSize) const override final; + NbElts_t getNbConsumedData(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final; + void updateConsummerProducer() override final; + + void forward() override; + void backward() override; +}; + +/******************************************************************************/ + +template <> +class SliceImpl_cpu<4> : public OperatorImpl { + public: + SliceImpl_cpu(const Slice_Op<4>& op) : OperatorImpl(op) {} + + static std::unique_ptr<SliceImpl_cpu<4>> create(const Slice_Op<4>& op) { + return std::make_unique<SliceImpl_cpu<4>>(op); + } + + public: + NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getRequiredMemory(const IOIndex_t outputIdx, + const std::vector<DimSize_t>& inputsSize) const override final; + NbElts_t getNbConsumedData(const IOIndex_t /*inputIdx*/) const override final; + NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final; + void updateConsummerProducer() override final; + + void forward() override; + void backward() override; +}; + + + +namespace { +static Registrar<Slice_Op<1>> registrarSliceImpl_1D_cpu("cpu", Aidge::SliceImpl_cpu<1>::create); +static Registrar<Slice_Op<2>> registrarSliceImpl_2D_cpu("cpu", Aidge::SliceImpl_cpu<2>::create); +static Registrar<Slice_Op<3>> registrarSliceImpl_3D_cpu("cpu", Aidge::SliceImpl_cpu<3>::create); +static Registrar<Slice_Op<4>> registrarSliceImpl_4D_cpu("cpu", Aidge::SliceImpl_cpu<4>::create); +} // namespace +} // namespace Aidge + +#endif /* AIDGE_CPU_OPERATOR_LEAKYRELUIMPL_H_ */ diff --git a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp new file mode 100644 index 0000000000000000000000000000000000000000..bbf4ccbae77089ca75dfee34f5bc5b0dd7d3697d --- /dev/null +++ b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp @@ -0,0 +1,98 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CPU_OPERATOR_SLICEIMPL_FORWARD_KERNEL_H_ +#define AIDGE_CPU_OPERATOR_SLICEIMPL_FORWARD_KERNEL_H_ + +#include "aidge/utils/Registrar.hpp" +#include "aidge/operator/Slice.hpp" +#include "aidge/backend/cpu/operator/SliceImpl.hpp" +#include <array> +#include <cstddef> + +#include "aidge/data/Data.hpp" + +namespace Aidge { +template <class I, std::size_t DIM> +void SliceImpl_cpu_forward_kernel(const typename Slice_Op<DIM>::Attrs& attrs, + const std::array<std::size_t, DIM> inputDims, + const void* input_, + void* output_) { + + const I* input = static_cast<const I*>(input_) + std::get<0>(attrs); + I* output = static_cast<I*>(output_); + const std::array<std::size_t, DIM> slicedDims = std::get<1>(attrs); + + // for inputDims = {4,5,5,3} & slicedDims = {3,2,2,1}, substractDims = {1,5,5,3} + std::array<std::size_t, DIM> substractedDims; + for (std::size_t i = 0; i < DIM; ++i) { + substractedDims[i] = inputDims[i] - slicedDims[i]; + } + + // for slicedDims = {3,2,2,1}, prodSlicedDims = {12,4,2,1} + std::array<std::size_t, DIM> prodSlicedDims; + std::array<std::size_t, DIM+1> prodInputDims; + prodSlicedDims[DIM - 1] = slicedDims[DIM - 1]; + prodInputDims[DIM - 1] = inputDims[DIM - 1]; + prodInputDims[DIM] = 1; + for (std::size_t i = 2; i <= DIM; ++i) { + prodSlicedDims[DIM - i] = prodSlicedDims[DIM - i + 1]*slicedDims[DIM - i]; + prodInputDims[DIM - i] = prodInputDims[DIM - i + 1]*inputDims[DIM - i]; + } + + std::size_t j = 0; + std::size_t i = 0; + for (; j < prodSlicedDims[0];) { + output[j] = input[i++]; + ++j; + for (std::size_t idx = DIM - 1; idx > 0; --idx) { + i += j % prodSlicedDims[idx] == 0 ? substractedDims[idx]*prodInputDims[idx+1] : 0; + } + } +} + +namespace { + +// DIM = 1 +static Registrar<SliceImplForward_cpu<1>> registrarSliceImplForward_1D_cpu_Float32( + {DataType::Float32}, Aidge::SliceImpl_cpu_forward_kernel<float, 1>); +static Registrar<SliceImplForward_cpu<1>> registrarSliceImplForward_1D_cpu_Int32( + {DataType::Int32}, Aidge::SliceImpl_cpu_forward_kernel<int, 1>); +static Registrar<SliceImplForward_cpu<1>> registrarSliceImplForward_1D_cpu_Float64( + {DataType::Float64}, Aidge::SliceImpl_cpu_forward_kernel<double, 1>); + +// DIM = 2 +static Registrar<SliceImplForward_cpu<2>> registrarSliceImplForward_2D_cpu_Float32( + {DataType::Float32}, Aidge::SliceImpl_cpu_forward_kernel<float, 2>); +static Registrar<SliceImplForward_cpu<2>> registrarSliceImplForward_2D_cpu_Int32( + {DataType::Int32}, Aidge::SliceImpl_cpu_forward_kernel<int, 2>); +static Registrar<SliceImplForward_cpu<2>> registrarSliceImplForward_2D_cpu_Float64( + {DataType::Float64}, Aidge::SliceImpl_cpu_forward_kernel<double, 2>); + +// DIM = 3 +static Registrar<SliceImplForward_cpu<3>> registrarSliceImplForward_3D_cpu_Float32( + {DataType::Float32}, Aidge::SliceImpl_cpu_forward_kernel<float, 3>); +static Registrar<SliceImplForward_cpu<3>> registrarSliceImplForward_3D_cpu_Int32( + {DataType::Int32}, Aidge::SliceImpl_cpu_forward_kernel<int, 3>); +static Registrar<SliceImplForward_cpu<3>> registrarSliceImplForward_3D_cpu_Float64( + {DataType::Float64}, Aidge::SliceImpl_cpu_forward_kernel<double, 3>); + +// DIM = 4 +static Registrar<SliceImplForward_cpu<4>> registrarSliceImplForward_4D_cpu_Float32( + {DataType::Float32}, Aidge::SliceImpl_cpu_forward_kernel<float, 4>); +static Registrar<SliceImplForward_cpu<4>> registrarSliceImplForward_4D_cpu_Int32( + {DataType::Int32}, Aidge::SliceImpl_cpu_forward_kernel<int, 4>); +static Registrar<SliceImplForward_cpu<4>> registrarSliceImplForward_4D_cpu_Float64( + {DataType::Float64}, Aidge::SliceImpl_cpu_forward_kernel<double, 4>); +} // namespace +} // namespace Aidge + +#endif /* AIDGE_CPU_OPERATOR_LEAKYRELUIMPL_FORWARD_KERNEL_H_ */ diff --git a/src/operator/AddImpl.cpp b/src/operator/AddImpl.cpp index 4be0078199671bc09af73a5f9dbfcd0ff2e61bed..851aaa5c6bcd1acc3e8bc17b11dd00143c543b5b 100644 --- a/src/operator/AddImpl.cpp +++ b/src/operator/AddImpl.cpp @@ -10,93 +10,74 @@ ********************************************************************************/ #include <cassert> -#include <chrono> // std::chrono::milliseconds #include <numeric> // std::accumulate -#include <thread> // std::this_thread::sleep_for #include <vector> -#include "aidge/operator/Conv.hpp" #include "aidge/utils/Types.h" +#include "aidge/data/Data.hpp" +#include "aidge/data/Tensor.hpp" #include "aidge/backend/cpu/operator/AddImpl.hpp" #include "aidge/backend/cpu/operator/AddImpl_forward_kernels.hpp" -////////////////////////////////// -// AddImpl_cpu<1> -////////////////////////////////// +Aidge::NbElts_t Aidge::AddImpl_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const { + assert(mOp.getRawInput(inputIdx) && "requires valid input"); -Aidge::NbElts_t Aidge::AddImpl_cpu<1>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { - // this implementation can be in-place - return 0; + // Requires the whole tensors + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(inputIdx))->dims(); + return std::accumulate(inputDims.begin(), inputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>()); } -void Aidge::AddImpl_cpu<1>::forward() { - assert(mOp.getInput(0) && "missing input #0"); - - // Find the correct kernel type - auto kernelFunc = Registrar<AddImplForward_cpu<1>>::create({ - mOp.getInput(0)->dataType(), - mOp.getOutput(0)->dataType()}); - - // Call kernel - kernelFunc(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); +Aidge::NbElts_t Aidge::AddImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { + // for the direct convolution algorithm, convolutions can be in-place, if there is no padding! + return 0; } +Aidge::NbElts_t Aidge::AddImpl_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t>& /*inputsSize*/) const { + // Requires the whole tensors, regardless of available data on inputs + assert(outputIdx == 0 && "operator has only one output"); + (void) outputIdx; -////////////////////////////////// -// AddImpl_cpu<2> -////////////////////////////////// + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(); + return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>()); +} -Aidge::NbElts_t Aidge::AddImpl_cpu<2>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { - // this implementation of add can be in-place - return 0; +Aidge::NbElts_t Aidge::AddImpl_cpu::getNbConsumedData(const Aidge::IOIndex_t inputIdx) const { + assert(inputIdx < mNbConsumedData.size()); + return mNbConsumedData[inputIdx]; } -void Aidge::AddImpl_cpu<2>::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); - - // Find the correct kernel type - auto kernelFunc = Registrar<AddImplForward_cpu<2>>::create({ - mOp.getInput(0)->dataType(), - mOp.getInput(1)->dataType(), - mOp.getOutput(0)->dataType()}); - - // Call kernel - kernelFunc(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); +Aidge::NbElts_t Aidge::AddImpl_cpu::getNbProducedData(const Aidge::IOIndex_t outputIdx) const { + assert(outputIdx < mNbProducedData.size()); + return mNbProducedData[outputIdx]; } +void Aidge::AddImpl_cpu::updateConsummerProducer() { + for (IOIndex_t inputIdx = 0; static_cast<NbElts_t>(inputIdx) < mNbConsumedData.size(); ++inputIdx) + mNbConsumedData[inputIdx]+= getNbRequiredData(inputIdx); // each input is consumed by the minimum amount for a forward pass -////////////////////////////////// -// AddImpl_cpu<3> -////////////////////////////////// + mNbProducedData[0]+= getRequiredMemory(0, {}); -Aidge::NbElts_t Aidge::AddImpl_cpu<3>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { - // this implementation of add can be in-place - return 0; } -void Aidge::AddImpl_cpu<3>::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); - assert(mOp.getInput(2) && "missing input #2"); - - // Find the correct kernel type - auto kernelFunc = Registrar<AddImplForward_cpu<3>>::create({ - mOp.getInput(0)->dataType(), - mOp.getInput(1)->dataType(), - mOp.getInput(2)->dataType(), - mOp.getOutput(0)->dataType()}); - - // Call kernel - kernelFunc(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getInput(2)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); -} +void Aidge::AddImpl_cpu::forward() { + assert(mOp.getRawInput(0) && "missing input in Add operator"); + DataType datatypeFirstInput = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(); + for (IOIndex_t i = 1; i < mOp.nbInputs(); ++i) { + assert(mOp.getRawInput(i) && "missing input in Add operator"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(i))->dataType() == datatypeFirstInput); + } + + auto kernelFunc = Registrar<AddImplForward_cpu>::create({ + datatypeFirstInput, + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); + + std::vector<const void*> opInputs; + for (IOIndex_t i = 0; i < mOp.nbInputs(); ++i) { + opInputs.push_back(std::static_pointer_cast<Tensor>(mOp.getRawInput(i))->getImpl()->rawPtr()); + } + + kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), + opInputs, + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); +} \ No newline at end of file diff --git a/src/operator/AvgPoolingImpl.cpp b/src/operator/AvgPoolingImpl.cpp index ae93934c23ce9bbc97d071be2f258e04ec8ae877..ad236f004ec9d806d43b9549adcec1c094573a1d 100644 --- a/src/operator/AvgPoolingImpl.cpp +++ b/src/operator/AvgPoolingImpl.cpp @@ -26,15 +26,15 @@ Aidge::NbElts_t Aidge::AvgPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /* } void Aidge::AvgPoolingImpl2D_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); + assert(mOp.getRawInput(0) && "missing input #0"); // Find the correct kernel type auto kernelFunc = - Registrar<AvgPoolingImpl2DForward_cpu>::create({mOp.getInput(0)->dataType(), mOp.getOutput(0)->dataType()}); + Registrar<AvgPoolingImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel kernelFunc(dynamic_cast<const AvgPooling_Op<2>&>(mOp).getStaticAttributes(), - mOp.getInput(0)->dims<4>(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/BatchNormImpl.cpp b/src/operator/BatchNormImpl.cpp index c9d52b767b03008d19209e34fa9a6f2749a63450..4cfd4b1bef0a027dfd28c95235dd864101ced3c6 100644 --- a/src/operator/BatchNormImpl.cpp +++ b/src/operator/BatchNormImpl.cpp @@ -25,26 +25,27 @@ Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*i } void Aidge::BatchNormImpl2D_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); - assert(mOp.getInput(2) && "missing input #2"); - assert(mOp.getInput(3) && "missing input #3"); - assert(mOp.getInput(4) && "missing input #4"); + assert(mOp.getRawInput(0) && "missing input #0"); + assert(mOp.getRawInput(1) && "missing input #1"); + assert(mOp.getRawInput(2) && "missing input #2"); + assert(mOp.getRawInput(3) && "missing input #3"); + assert(mOp.getRawInput(4) && "missing input #4"); - assert(mOp.getOutput(0)->nbDims() == 4); + assert(std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->nbDims() == 4); // Find the correct kernel type auto kernelFunc = - Registrar<BatchNormImpl2DForward_cpu>::create({mOp.getInput(0)->dataType(), mOp.getInput(1)->dataType(), - mOp.getOutput(0)->dataType()}); + Registrar<BatchNormImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel kernelFunc(dynamic_cast<const BatchNorm_Op<2>&>(mOp).getStaticAttributes(), - mOp.getInput(0)->dims<4>(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getInput(2)->getImpl()->rawPtr(), - mOp.getInput(3)->getImpl()->rawPtr(), - mOp.getInput(4)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(3))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(4))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr(), true); } diff --git a/src/operator/ConcatImpl.cpp b/src/operator/ConcatImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d46054480bab433f3493ffac7fbff48f27f2b570 --- /dev/null +++ b/src/operator/ConcatImpl.cpp @@ -0,0 +1,89 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <cassert> +#include <numeric> // std::accumulate +#include <vector> + +#include "aidge/utils/Types.h" +#include "aidge/data/Data.hpp" +#include "aidge/data/Tensor.hpp" + +#include "aidge/backend/cpu/operator/ConcatImpl.hpp" +#include "aidge/backend/cpu/operator/ConcatImpl_forward_kernels.hpp" + +Aidge::NbElts_t Aidge::ConcatImpl_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const { + assert(mOp.getRawInput(inputIdx) && "requires valid input"); + + // Requires the whole tensors + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(inputIdx))->dims(); + return std::accumulate(inputDims.begin(), inputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>()); +} + +Aidge::NbElts_t Aidge::ConcatImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { + // for the direct convolution algorithm, convolutions can be in-place, if there is no padding! + return 0; +} + +Aidge::NbElts_t Aidge::ConcatImpl_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t>& /*inputsSize*/) const { + // Requires the whole tensors, regardless of available data on inputs + assert(outputIdx == 0 && "operator has only one output"); + (void) outputIdx; + + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(); + return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>()); +} + +Aidge::NbElts_t Aidge::ConcatImpl_cpu::getNbConsumedData(const Aidge::IOIndex_t inputIdx) const { + assert(inputIdx < mNbConsumedData.size()); + return mNbConsumedData[inputIdx]; +} + +Aidge::NbElts_t Aidge::ConcatImpl_cpu::getNbProducedData(const Aidge::IOIndex_t outputIdx) const { + assert(outputIdx < mNbProducedData.size()); + return mNbProducedData[outputIdx]; +} + +void Aidge::ConcatImpl_cpu::updateConsummerProducer() { + for (IOIndex_t inputIdx = 0; static_cast<NbElts_t>(inputIdx) < mNbConsumedData.size(); ++inputIdx) + mNbConsumedData[inputIdx]+= getNbRequiredData(inputIdx); // each input is consumed by the minimum amount for a forward pass + + mNbProducedData[0]+= getRequiredMemory(0, {}); + +} + +void Aidge::ConcatImpl_cpu::forward() { + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input in Concat operator"); + DataType datatypeFirstInput = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(); + for (IOIndex_t i = 1; i < mOp.nbInputs(); ++i) { + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(i)) && "missing input in Concat operator"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(i))->dataType() == datatypeFirstInput); + } + + auto kernelFunc = Registrar<ConcatImplForward_cpu>::create({ + datatypeFirstInput, + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); + + std::vector<const void*> opInputs; + std::vector<DimSize_t> opInputAxis; + for (IOIndex_t i = 0; i < mOp.nbInputs(); ++i) { + opInputs.push_back(std::static_pointer_cast<Tensor>(mOp.getRawInput(i))->getImpl()->rawPtr()); + opInputAxis.push_back(std::static_pointer_cast<Tensor>(mOp.getRawInput(i))->dims()[dynamic_cast<const Concat_Op&>(mOp).template getAttr<DimSize_t>("Axis")]); + } + + kernelFunc(dynamic_cast<const Concat_Op&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(), + opInputAxis, + opInputs, + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); +} + +void Aidge::ConcatImpl_cpu::backward() { printf("Not implemented yet.\n"); } \ No newline at end of file diff --git a/src/operator/ConvDepthWiseImpl.cpp b/src/operator/ConvDepthWiseImpl.cpp index 5ac109e2f282ce55c8a274597be08561c2baf5c8..4a722a5e4b00412617eb998f8cbfb36eb0c46035 100644 --- a/src/operator/ConvDepthWiseImpl.cpp +++ b/src/operator/ConvDepthWiseImpl.cpp @@ -27,19 +27,23 @@ Aidge::NbElts_t Aidge::ConvDepthWiseImpl2D_cpu::getNbRequiredProtected(IOIndex_t } void Aidge::ConvDepthWiseImpl2D_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); - assert(mOp.getInput(2) && "missing input #2"); + assert(mOp.getRawInput(0) && "missing input #0"); + assert(mOp.getRawInput(1) && "missing input #1"); + assert(mOp.getRawInput(2) && "missing input #2"); - assert((mOp.getInput(0)->nbDims() == 4) && "support for 4-dimensions tensors only"); + assert((std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims() == 4) && "support for 4-dimensions tensors only"); // Find the correct kernel type auto kernelFunc = - Registrar<ConvDepthWiseImpl2DForward_cpu>::create({mOp.getInput(0)->dataType(), mOp.getInput(1)->dataType(), - mOp.getInput(2)->dataType(), mOp.getOutput(0)->dataType()}); + Registrar<ConvDepthWiseImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const ConvDepthWise_Op<2>&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getInput(0))->dims<4>(), - mOp.getInput(0)->getImpl()->rawPtr(), mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getInput(2)->getImpl()->rawPtr(), mOp.getOutput(0)->getImpl()->rawPtr()); + kernelFunc(dynamic_cast<const ConvDepthWise_Op<2>&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/ConvImpl.cpp b/src/operator/ConvImpl.cpp index 347d427908502b9976c2943417775bcbf0d3b344..87b54afbfd0b4c2d3bb57812d07575bc0e255626 100644 --- a/src/operator/ConvImpl.cpp +++ b/src/operator/ConvImpl.cpp @@ -28,17 +28,19 @@ Aidge::NbElts_t Aidge::ConvImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputI void Aidge::ConvImpl2D_cpu::forward() { // FIXME: uncomment the following code once memory handling will work - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); - assert(mOp.getInput(2) && "missing input #2"); + assert(mOp.getRawInput(0) && "missing input #0"); + assert(mOp.getRawInput(1) && "missing input #1"); + assert(mOp.getRawInput(2) && "missing input #2"); // Find the correct kernel type auto kernelFunc = - Registrar<ConvImpl2DForward_cpu>::create({mOp.getInput(0)->dataType(), mOp.getInput(1)->dataType(), - mOp.getInput(2)->dataType(), mOp.getOutput(0)->dataType()}); + Registrar<ConvImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const Conv_Op<2>&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getInput(0))->dims<4>(), - mOp.getInput(0)->getImpl()->rawPtr(), mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getInput(2)->getImpl()->rawPtr(), mOp.getOutput(0)->getImpl()->rawPtr()); + kernelFunc(dynamic_cast<const Conv_Op<2>&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/DivImpl.cpp b/src/operator/DivImpl.cpp index f7cbc7d20b9126ab318a6989ebf627491cb247aa..2e913df1a4c42a2c6132a4096a92c1ab0eeab0c0 100644 --- a/src/operator/DivImpl.cpp +++ b/src/operator/DivImpl.cpp @@ -27,25 +27,16 @@ Aidge::NbElts_t Aidge::DivImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_ } void Aidge::DivImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); - - assert(((mOp.getInput(1)->size() == 1) || - (mOp.getInput(1)->size() == mOp.getInput(0)->size()) || - (mOp.getInput(1)->nbDims() == 1 && mOp.getInput(1)->size() == mOp.getInput(0)->dims()[mOp.getInput(0)->nbDims()-1]) - ) && - "input #1 must either be a tensor of size 1, the number of channels of input # or the same size of input #0"); - // Find the correct kernel type auto kernelFunc = Registrar<DivImplForward_cpu>::create({ - mOp.getInput(0)->dataType(), - mOp.getInput(1)->dataType(), - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(), - std::static_pointer_cast<Tensor>(mOp.getInput(1))->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + kernelFunc(std::static_pointer_cast<Tensor>(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)))->size(), + std::static_pointer_cast<Tensor>(std::static_pointer_cast<Tensor>(mOp.getRawInput(1)))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/FCImpl.cpp b/src/operator/FCImpl.cpp index 77ce50281cf4db94a492fce88a6d73eabde1bae5..1e5450d330ee89bdceb30aca846800d7764ca911 100644 --- a/src/operator/FCImpl.cpp +++ b/src/operator/FCImpl.cpp @@ -23,23 +23,23 @@ void Aidge::FCImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); - assert(mOp.getInput(2) && "missing input #2"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(1)) && "missing input #1"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(2)) && "missing input #2"); // Find the correct kernel type auto kernelFunc = Registrar<FCImplForward_cpu>::create( - {mOp.getInput(0)->dataType(), - mOp.getInput(1)->dataType(), - mOp.getInput(2)->dataType(), - mOp.getOutput(0)->dataType()}); + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - // if (mOp.getInput(0)->nbDims() == 4) { + // if (std::static_pointer_cast<Tensor>(mOp.getRawInput(0)->nbDims() == 4) { // kernelFunc( // mOp.getStaticAttributes(), - // std::static_pointer_cast<Tensor>(mOp.getInput(0))->dims<4>(), - // mOp.getInput(0)->getImpl()->rawPtr(), + // std::static_pointer_cast<Tensor>(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), + // std::static_pointer_cast<Tensor>(mOp.getRawInput(0)->getImpl()->rawPtr(), // mOp.mInputs[1]->getImpl()->rawPtr(), // mOp.mInputs[2]->getImpl()->rawPtr(), // mOp.getOutput(0)->getImpl()->rawPtr()); @@ -47,10 +47,10 @@ void Aidge::FCImpl_cpu::forward() // else kernelFunc( dynamic_cast<const FC_Op&>(mOp).getStaticAttributes(), - mOp.getInput(0)->dims()[0], - mOp.getInput(0)->sizeM1(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getInput(2)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims()[0], + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->sizeM1(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/LeakyReLUImpl.cpp b/src/operator/LeakyReLUImpl.cpp index c81acf60f0171bd819bfd760565e59d361401e29..9ea0f2400d954bf5fd25428a7bf46fbd188b4994 100644 --- a/src/operator/LeakyReLUImpl.cpp +++ b/src/operator/LeakyReLUImpl.cpp @@ -27,16 +27,16 @@ Aidge::NbElts_t Aidge::LeakyReLUImpl_cpu::getNbRequiredProtected(const Aidge::IO } void Aidge::LeakyReLUImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = Registrar<LeakyReLUImplForward_cpu>::create({ - mOp.getInput(0)->dataType(), - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel kernelFunc(dynamic_cast<const LeakyReLU_Op&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/MatMulImpl.cpp b/src/operator/MatMulImpl.cpp index f4812629c4bcf7b699d3eca66ff4e884df0c04d6..0ad9bd6ceb4ac27c35e72e21477864980bcecfd9 100644 --- a/src/operator/MatMulImpl.cpp +++ b/src/operator/MatMulImpl.cpp @@ -23,33 +23,33 @@ void Aidge::MatMulImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(1)) && "missing input #1"); // Find the correct kernel type auto kernelFunc = Registrar<MatMulImplForward_cpu>::create( - {mOp.getInput(0)->dataType(), - mOp.getInput(1)->dataType(), - mOp.getOutput(0)->dataType()}); + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel // if (mOp.getInput(0)->nbDims() == 4) { // kernelFunc( // mOp.getStaticAttributes(), - // std::static_pointer_cast<Tensor>(mOp.getInput(0))->dims<4>(), - // mOp.getInput(0)->getImpl()->rawPtr(), + // std::static_pointer_cast<Tensor>(mOp.getInput(0))->template dims<4>(), + // mOp.getInput(0))->getImpl()->rawPtr(), // mOp.mInputs[1]->getImpl()->rawPtr(), // mOp.mInputs[2]->getImpl()->rawPtr(), - // mOp.getOutput(0)->getImpl()->rawPtr()); + // std::static_pointer_cast<Tensor>(mOp.getRawOutput(0)->getImpl()->rawPtr()); // } // else kernelFunc( dynamic_cast<const MatMul_Op&>(mOp).getStaticAttributes(), - mOp.getInput(0)->dims()[0], - mOp.getInput(0)->sizeM1(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims()[0], + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->sizeM1(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/MaxPoolingImpl.cpp b/src/operator/MaxPoolingImpl.cpp index c5127c1e4577b3da44716cdc34358a8906b9cbb0..00a279707424e0fce4eb0af07cdade80fe2dffd9 100644 --- a/src/operator/MaxPoolingImpl.cpp +++ b/src/operator/MaxPoolingImpl.cpp @@ -26,15 +26,15 @@ Aidge::NbElts_t Aidge::MaxPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /* } void Aidge::MaxPoolingImpl2D_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = - Registrar<MaxPoolingImpl2DForward_cpu>::create({mOp.getInput(0)->dataType(), mOp.getOutput(0)->dataType()}); + Registrar<MaxPoolingImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel kernelFunc(dynamic_cast<const MaxPooling_Op<2>&>(mOp).getStaticAttributes(), - mOp.getInput(0)->dims<4>(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/MulImpl.cpp b/src/operator/MulImpl.cpp index b6eb245cf0b1afc8893dfbab13d3294b945b3e0e..dfd33445a527459245137f4ca6e6d5e8f416d82c 100644 --- a/src/operator/MulImpl.cpp +++ b/src/operator/MulImpl.cpp @@ -27,25 +27,16 @@ Aidge::NbElts_t Aidge::MulImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_ } void Aidge::MulImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); - - assert(((mOp.getInput(1)->size() == 1) || - (mOp.getInput(1)->size() == mOp.getInput(0)->size()) || - (mOp.getInput(1)->nbDims() == 1 && mOp.getInput(1)->size() == mOp.getInput(0)->dims()[mOp.getInput(0)->nbDims()-1]) - ) && - "input #1 must either be a tensor of size 1, the number of channels of input # or the same size of input #0"); - // Find the correct kernel type auto kernelFunc = Registrar<MulImplForward_cpu>::create({ - mOp.getInput(0)->dataType(), - mOp.getInput(1)->dataType(), - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(), - std::static_pointer_cast<Tensor>(mOp.getInput(1))->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/PadImpl.cpp b/src/operator/PadImpl.cpp index 7c2af9e2161ddc4567b702690b8f268fe1af1b6c..a5bf1c52ba39a2f805f2b28562cbab19191ac754 100644 --- a/src/operator/PadImpl.cpp +++ b/src/operator/PadImpl.cpp @@ -27,19 +27,21 @@ Aidge::NbElts_t Aidge::PadImpl2D_cpu::getNbRequiredProtected(IOIndex_t inputIdx) // Padding cannot be in-place! // We must ensure that we do not override data that has not been consummed yet. - const auto inputSize = std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(); - const auto outputSize = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->size(); + const auto inputSize = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(); + const auto outputSize = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->size(); return (outputSize - inputSize); } void Aidge::PadImpl2D_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = - Registrar<PadImpl2DForward_cpu>::create({mOp.getInput(0)->dataType(), mOp.getOutput(0)->dataType()}); + Registrar<PadImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const Pad_Op<2>&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getInput(0))->dims<4>(), - mOp.getInput(0)->getImpl()->rawPtr(), mOp.getOutput(0)->getImpl()->rawPtr()); + kernelFunc(dynamic_cast<const Pad_Op<2>&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/PowImpl.cpp b/src/operator/PowImpl.cpp index 52a4f46956e0d0f348583a23772c519a64ca857d..30fafa9b3d060eada9468fc9a2bf94ec6aeab3c0 100644 --- a/src/operator/PowImpl.cpp +++ b/src/operator/PowImpl.cpp @@ -27,25 +27,16 @@ Aidge::NbElts_t Aidge::PowImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_ } void Aidge::PowImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); - - assert(((mOp.getInput(1)->size() == 1) || - (mOp.getInput(1)->size() == mOp.getInput(0)->size()) || - (mOp.getInput(1)->nbDims() == 1 && mOp.getInput(1)->size() == mOp.getInput(0)->dims()[mOp.getInput(0)->nbDims()-1]) - ) && - "input #1 must either be a tensor of size 1, the number of channels of input # or the same size of input #0"); - // Find the correct kernel type auto kernelFunc = Registrar<PowImplForward_cpu>::create({ - mOp.getInput(0)->dataType(), - mOp.getInput(1)->dataType(), - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(), - std::static_pointer_cast<Tensor>(mOp.getInput(1))->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/ProducerImpl.cpp b/src/operator/ProducerImpl.cpp index 404d95ef685fea3c5796e396a2c5e17c60ce53bc..827f969e4d636862919e07b2f9457bed3e19e0f3 100644 --- a/src/operator/ProducerImpl.cpp +++ b/src/operator/ProducerImpl.cpp @@ -26,7 +26,7 @@ Aidge::DimSize_t Aidge::ProducerImpl_cpu::getNbProducedData( assert(outputIdx == 0 && "operator has only one output"); (void) outputIdx; - return std::static_pointer_cast<Tensor>(mOp.getOutput(0))->size(); + return std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->size(); } void Aidge::ProducerImpl_cpu::forward() diff --git a/src/operator/ReLUImpl.cpp b/src/operator/ReLUImpl.cpp index 647898d3f0495a74fe7c1dd48dba446bd92cb7b5..2819bb864cb552adfcd1c52e57b734fa0a9d0ce1 100644 --- a/src/operator/ReLUImpl.cpp +++ b/src/operator/ReLUImpl.cpp @@ -27,15 +27,15 @@ Aidge::NbElts_t Aidge::ReLUImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex } void Aidge::ReLUImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = Registrar<ReLUImplForward_cpu>::create({ - mOp.getInput(0)->dataType(), - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(mOp.getInput(0)->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/ScalingImpl.cpp b/src/operator/ScalingImpl.cpp index 39c1326dd677a704795f625440e385d3f3a6465c..c2d2b17245811ab20de310e4656bc67b1a28b257 100644 --- a/src/operator/ScalingImpl.cpp +++ b/src/operator/ScalingImpl.cpp @@ -26,16 +26,16 @@ Aidge::NbElts_t Aidge::ScalingImpl_cpu::getNbRequiredProtected(const Aidge::IOIn } void Aidge::ScalingImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = Registrar<ScalingImplForward_cpu>::create({ - mOp.getInput(0)->dataType(), - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel kernelFunc(dynamic_cast<const Scaling_Op&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/SliceImpl.cpp b/src/operator/SliceImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..3ae56e1a4f613a4188dc51659853e07674e74768 --- /dev/null +++ b/src/operator/SliceImpl.cpp @@ -0,0 +1,258 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <cassert> +#include <numeric> // std::accumulate +#include <functional> // std::multiplies + +#include "aidge/operator/Slice.hpp" + +#include "aidge/backend/cpu/operator/SliceImpl.hpp" +#include "aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp" +#include "aidge/utils/Types.h" +#include <vector> +#include <cassert> +#include <tuple> + + +Aidge::NbElts_t Aidge::SliceImpl_cpu<1>::getNbRequiredData(const Aidge::IOIndex_t /*inputIdx*/) const { + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "requires valid input"); + + // Requires the whole tensors + return std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<1>()[0]; +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<1>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { return 0; } + +Aidge::NbElts_t Aidge::SliceImpl_cpu<1>::getRequiredMemory(const Aidge::IOIndex_t outputIdx, + const std::vector<Aidge::DimSize_t>& inputsSize) const { + (void)outputIdx; + (void)inputsSize; + return std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->template dims<1>()[0]; +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<1>::getNbConsumedData(const Aidge::IOIndex_t /*inputIdx*/) const { + return mNbConsumedData[0]; +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<1>::getNbProducedData(const Aidge::IOIndex_t /*outputIdx*/) const { + return mNbProducedData[0]; +} + +void Aidge::SliceImpl_cpu<1>::updateConsummerProducer() { + // each input is consumed by the minimum amount for a forward pass + mNbConsumedData[0] += getNbRequiredData(0); + + mNbProducedData[0] += getRequiredMemory(0, {}); +} + +void Aidge::SliceImpl_cpu<1>::forward() { + // FIXME: uncomment the following code once memory handling will work + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + + // Find the correct kernel type + auto kernelFunc = Registrar<SliceImplForward_cpu<1>>::create( + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType()}); + + // Call kernel + kernelFunc(dynamic_cast<const Slice_Op<1>&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<1>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr() + ); + + // each input is consumed by the minimum amount for a forward pass + mNbConsumedData[0] += getNbRequiredData(0); + + mNbProducedData[0] += getRequiredMemory(0, {}); +} + +void Aidge::SliceImpl_cpu<1>::backward() { printf("Not implemented yet.\n"); } + +///////////////////////////////////////////////////////////////////////// + +Aidge::NbElts_t Aidge::SliceImpl_cpu<2>::getNbRequiredData(const Aidge::IOIndex_t /*inputIdx*/) const { + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "requires valid input"); + + // Requires the whole tensors + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<2>(); + return inputDims[0]*inputDims[1]; +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<2>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { return 0; } + +Aidge::NbElts_t Aidge::SliceImpl_cpu<2>::getRequiredMemory(const Aidge::IOIndex_t outputIdx, + const std::vector<Aidge::DimSize_t>& inputsSize) const { + (void)outputIdx; + (void)inputsSize; + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->template dims<2>(); + return outputDims[0]*outputDims[1]; +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<2>::getNbConsumedData(const Aidge::IOIndex_t /*inputIdx*/) const { + return mNbConsumedData[0]; +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<2>::getNbProducedData(const Aidge::IOIndex_t /*outputIdx*/) const { + return mNbProducedData[0]; +} + +void Aidge::SliceImpl_cpu<2>::updateConsummerProducer() { + // each input is consumed by the minimum amount for a forward pass + mNbConsumedData[0] += getNbRequiredData(0); + + mNbProducedData[0] += getRequiredMemory(0, {}); +} + +void Aidge::SliceImpl_cpu<2>::forward() { + // FIXME: uncomment the following code once memory handling will work + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + + // Find the correct kernel type + auto kernelFunc = Registrar<SliceImplForward_cpu<2>>::create( + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType()}); + + // Call kernel + kernelFunc(dynamic_cast<const Slice_Op<2>&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<2>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr() + ); + + // each input is consumed by the minimum amount for a forward pass + mNbConsumedData[0] += getNbRequiredData(0); + + mNbProducedData[0] += getRequiredMemory(0, {}); +} + +void Aidge::SliceImpl_cpu<2>::backward() { printf("Not implemented yet.\n"); } + +//////////////////////////////////////////////////////////////////////////// + +Aidge::NbElts_t Aidge::SliceImpl_cpu<3>::getNbRequiredData(const Aidge::IOIndex_t /*inputIdx*/) const { + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "requires valid input"); + + // Requires the whole tensors + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<3>(); + + return std::accumulate(inputDims.begin(), inputDims.end(), static_cast<NbElts_t>(1), + std::multiplies<NbElts_t>()); +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<3>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { return 0; } + +Aidge::NbElts_t Aidge::SliceImpl_cpu<3>::getRequiredMemory(const Aidge::IOIndex_t outputIdx, + const std::vector<Aidge::DimSize_t>& inputsSize) const { + (void)outputIdx; + (void)inputsSize; + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->template dims<3>(); + return std::accumulate(outputDims.begin(), outputDims.end(), static_cast<NbElts_t>(1), + std::multiplies<NbElts_t>()); +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<3>::getNbConsumedData(const Aidge::IOIndex_t /*inputIdx*/) const { + return mNbConsumedData[0]; +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<3>::getNbProducedData(const Aidge::IOIndex_t /*outputIdx*/) const { + return mNbProducedData[0]; +} + +void Aidge::SliceImpl_cpu<3>::updateConsummerProducer() { + // each input is consumed by the minimum amount for a forward pass + mNbConsumedData[0] += getNbRequiredData(0); + + mNbProducedData[0] += getRequiredMemory(0, {}); +} + +void Aidge::SliceImpl_cpu<3>::forward() { + // FIXME: uncomment the following code once memory handling will work + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + + // Find the correct kernel type + auto kernelFunc = Registrar<SliceImplForward_cpu<3>>::create( + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType()}); + + // Call kernel + kernelFunc(dynamic_cast<const Slice_Op<3>&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<3>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr() + ); + + // each input is consumed by the minimum amount for a forward pass + mNbConsumedData[0] += getNbRequiredData(0); + + mNbProducedData[0] += getRequiredMemory(0, {}); +} + +void Aidge::SliceImpl_cpu<3>::backward() { printf("Not implemented yet.\n"); } + +////////////////////////////////////////////////////////////////////////////// + +Aidge::NbElts_t Aidge::SliceImpl_cpu<4>::getNbRequiredData(const Aidge::IOIndex_t /*inputIdx*/) const { + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "requires valid input"); + + // Requires the whole tensors + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(); + + return std::accumulate(inputDims.begin(), inputDims.end(), static_cast<NbElts_t>(1), + std::multiplies<NbElts_t>()); +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<4>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { return 0; } + +Aidge::NbElts_t Aidge::SliceImpl_cpu<4>::getRequiredMemory(const Aidge::IOIndex_t outputIdx, + const std::vector<Aidge::DimSize_t>& inputsSize) const { + (void)outputIdx; + (void)inputsSize; + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->template dims<4>(); + return std::accumulate(outputDims.begin(), outputDims.end(), static_cast<NbElts_t>(1), + std::multiplies<NbElts_t>()); +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<4>::getNbConsumedData(const Aidge::IOIndex_t /*inputIdx*/) const { + return mNbConsumedData[0]; +} + +Aidge::NbElts_t Aidge::SliceImpl_cpu<4>::getNbProducedData(const Aidge::IOIndex_t /*outputIdx*/) const { + return mNbProducedData[0]; +} + +void Aidge::SliceImpl_cpu<4>::updateConsummerProducer() { + // each input is consumed by the minimum amount for a forward pass + mNbConsumedData[0] += getNbRequiredData(0); + + mNbProducedData[0] += getRequiredMemory(0, {}); +} + +void Aidge::SliceImpl_cpu<4>::forward() { + // FIXME: uncomment the following code once memory handling will work + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + + // Find the correct kernel type + auto kernelFunc = Registrar<SliceImplForward_cpu<4>>::create( + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType()}); + + // Call kernel + kernelFunc(dynamic_cast<const Slice_Op<4>&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr() + ); + + // each input is consumed by the minimum amount for a forward pass + mNbConsumedData[0] += getNbRequiredData(0); + + mNbProducedData[0] += getRequiredMemory(0, {}); +} + +void Aidge::SliceImpl_cpu<4>::backward() { printf("Not implemented yet.\n"); } \ No newline at end of file diff --git a/src/operator/SoftmaxImpl.cpp b/src/operator/SoftmaxImpl.cpp index 45b455a3f361587848e33864872f497493315a78..1ce9564a19e9dc4b992705d3604a820065b1f725 100644 --- a/src/operator/SoftmaxImpl.cpp +++ b/src/operator/SoftmaxImpl.cpp @@ -27,21 +27,21 @@ Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getNbRequiredProtected(const Aidge::IOIn } void Aidge::SoftmaxImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(0)->nbDims()>1); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims()>1); // Find the correct kernel type auto kernelFunc = Registrar<SoftmaxImplForward_cpu>::create({ - mOp.getInput(0)->dataType(), - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); - DimSize_t batchSize = mOp.getInput(0)->dims()[0]; - DimSize_t channelSize = mOp.getInput(0)->dims()[1]; - DimSize_t featureSize = mOp.getInput(0)->sizeM1()/channelSize; + DimSize_t batchSize = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims()[0]; + DimSize_t channelSize = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims()[1]; + DimSize_t featureSize = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->sizeM1()/channelSize; // Call kernel kernelFunc(batchSize, channelSize, featureSize, - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/SqrtImpl.cpp b/src/operator/SqrtImpl.cpp index 75d1d2fb20b6748c931124847198b3168d9bdba7..b9a01ff9146921b55dede775e1e3f61deed21a8e 100644 --- a/src/operator/SqrtImpl.cpp +++ b/src/operator/SqrtImpl.cpp @@ -27,15 +27,15 @@ Aidge::NbElts_t Aidge::SqrtImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex } void Aidge::SqrtImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = Registrar<SqrtImplForward_cpu>::create({ - mOp.getInput(0)->dataType(), - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(mOp.getInput(0)->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } \ No newline at end of file diff --git a/src/operator/SubImpl.cpp b/src/operator/SubImpl.cpp index 6d87821d89ff84aa1046a9ecf0fdd83dcc5dda53..7d33d935f8aed4eef741ef81e316f387ad676abe 100644 --- a/src/operator/SubImpl.cpp +++ b/src/operator/SubImpl.cpp @@ -27,25 +27,17 @@ Aidge::NbElts_t Aidge::SubImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_ } void Aidge::SubImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input #0"); - assert(mOp.getInput(1) && "missing input #1"); - - assert(((mOp.getInput(1)->size() == 1) || - (mOp.getInput(1)->size() == mOp.getInput(0)->size()) || - (mOp.getInput(1)->nbDims() == 1 && mOp.getInput(1)->size() == mOp.getInput(0)->dims()[mOp.getInput(0)->nbDims()-1]) - ) && - "input #1 must either be a tensor of size 1, the number of channels of input # or the same size of input #0"); // Find the correct kernel type auto kernelFunc = Registrar<SubImplForward_cpu>::create({ - mOp.getInput(0)->dataType(), - mOp.getInput(1)->dataType(), - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(), - std::static_pointer_cast<Tensor>(mOp.getInput(1))->size(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getInput(1)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); + kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/unit_tests/operator/Test_AddImpl.cpp b/unit_tests/operator/Test_AddImpl.cpp index 18d98d169ddcb74310c5153d7c2c95103c395bb7..740b1a5322b55e2347d93ed2e515358080a108a5 100644 --- a/unit_tests/operator/Test_AddImpl.cpp +++ b/unit_tests/operator/Test_AddImpl.cpp @@ -18,7 +18,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] Add(forward)") { +TEST_CASE("[cpu/operator] Add(forward)", "[Add][CPU]") { std::shared_ptr<Tensor> input1 = std::make_shared<Tensor>(Array4D<int,3,3,3,2> { { // { // @@ -40,14 +40,15 @@ TEST_CASE("[cpu/operator] Add(forward)") { }); // SECTION("One input") { - std::shared_ptr<Node> myAdd = Add<1>(); - myAdd->getOperator()->setBackend("cpu"); - myAdd->getOperator()->setDatatype(DataType::Int32); - myAdd->getOperator()->associateInput(0, input1); - myAdd->getOperator()->computeOutputDims(); + std::shared_ptr<Node> myAdd = Add(1); + auto op = std::static_pointer_cast<OperatorTensor>(myAdd -> getOperator()); + op->associateInput(0, input1); + op->setBackend("cpu"); + op->setDataType(DataType::Int32); + op->computeOutputDims(); myAdd->forward(); - REQUIRE(*std::static_pointer_cast<Tensor>(myAdd->getOperator()->getOutput(0)) == *input1); + REQUIRE(*(op->getOutput(0)) == *input1); } SECTION("Two inputs") { @@ -71,15 +72,16 @@ TEST_CASE("[cpu/operator] Add(forward)") { } }); - std::shared_ptr<Node> myAdd = Add<2>(); - myAdd->getOperator()->setDatatype(DataType::Int32); - myAdd->getOperator()->setBackend("cpu"); - myAdd->getOperator()->associateInput(0, input1); - myAdd->getOperator()->associateInput(1, input1); - myAdd->getOperator()->computeOutputDims(); + std::shared_ptr<Node> myAdd = Add(2); + auto op = std::static_pointer_cast<OperatorTensor>(myAdd -> getOperator()); + op->associateInput(0, input1); + op->associateInput(1, input1); + op->setBackend("cpu"); + op->setDataType(DataType::Int32); + op->computeOutputDims(); myAdd->forward(); - REQUIRE(*std::static_pointer_cast<Tensor>(myAdd->getOperator()->getOutput(0)) == *expectedOutput); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); } SECTION("Three inputs") { @@ -103,15 +105,16 @@ TEST_CASE("[cpu/operator] Add(forward)") { } }); - std::shared_ptr<Node> myAdd = Add<3>(); - myAdd->getOperator()->setDatatype(DataType::Int32); - myAdd->getOperator()->setBackend("cpu"); - myAdd->getOperator()->associateInput(0, input1); - myAdd->getOperator()->associateInput(1, input1); - myAdd->getOperator()->associateInput(2, input1); - myAdd->getOperator()->computeOutputDims(); + std::shared_ptr<Node> myAdd = Add(3); + auto op = std::static_pointer_cast<OperatorTensor>(myAdd -> getOperator()); + op->associateInput(0, input1); + op->associateInput(1, input1); + op->associateInput(2, input1); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myAdd->forward(); - REQUIRE(*std::static_pointer_cast<Tensor>(myAdd->getOperator()->getOutput(0)) == *expectedOutput); + REQUIRE(*op->getOutput(0) == *expectedOutput); } } \ No newline at end of file diff --git a/unit_tests/operator/Test_AvgPoolingImpl.cpp b/unit_tests/operator/Test_AvgPoolingImpl.cpp index 10d4c09b32528e2cdcdbf2c56204e6911fca0187..c4abf0201771c3f39a429e0f935b8216a04514e1 100644 --- a/unit_tests/operator/Test_AvgPoolingImpl.cpp +++ b/unit_tests/operator/Test_AvgPoolingImpl.cpp @@ -20,7 +20,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] AvgPooling(forward)") { +TEST_CASE("[cpu/operator] AvgPooling(forward)", "[AvgPooling][CPU]") { std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<float,2,2,5,5> { //NCHW { { @@ -53,10 +53,9 @@ TEST_CASE("[cpu/operator] AvgPooling(forward)") { }); SECTION("Stride") { std::shared_ptr<Node> myAvgPool = AvgPooling({2,2}, "mycdw", {2,2}); - myAvgPool->getOperator()->setDatatype(DataType::Float32); - myAvgPool->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myAvgPool -> getOperator()); - std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<float,2,2,2,2> { + std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<float,2,2,2,2> { { { {{ 3, 5}, @@ -72,11 +71,13 @@ TEST_CASE("[cpu/operator] AvgPooling(forward)") { } } }); - myAvgPool->getOperator()->associateInput(0,myInput); - myAvgPool->getOperator()->computeOutputDims(); + op->associateInput(0,myInput); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + op->computeOutputDims(); myAvgPool->forward(); - myAvgPool->getOperator()->getOutput(0)->print(); - REQUIRE(*(myAvgPool->getOperator()->getOutput(0)) == *myOutput); + op->getOutput(0)->print(); + REQUIRE(*(op->getOutput(0)) == *myOutput); } SECTION("Stride >= feature dim") { @@ -90,21 +91,22 @@ TEST_CASE("[cpu/operator] AvgPooling(forward)") { } }); std::shared_ptr<Node> myAvgPool = AvgPooling({3,3}, "mycdw", {3,3}); - myAvgPool->getOperator()->setDatatype(DataType::Float32); - myAvgPool->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myAvgPool -> getOperator()); - Tensor myOutput = Array4D<float,1,1,1,1> { + Tensor myOutput = Array4D<float,1,1,1,1> { {{{{(0.3745 + 0.9507 + 0.7320 + 0.5987 + 0.1560 + 0.1560 + 0.0581 + 0.8662 + 0.6011)/9.0}}}} }; - myAvgPool->getOperator()->associateInput(0,myInput2); - myAvgPool->getOperator()->computeOutputDims(); + op->associateInput(0,myInput2); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + op->computeOutputDims(); myAvgPool->forward(); - myAvgPool->getOperator()->getOutput(0)->print(); - float* outPtr = static_cast<float*>(myAvgPool->getOperator()->output(0).getImpl()->rawPtr()); + op->getOutput(0)->print(); + float* outPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedOutPtr = static_cast<float*>(myOutput.getImpl()->rawPtr()); for (std::size_t i = 0; i < 1; ++i) { REQUIRE(std::abs(outPtr[i] - expectedOutPtr[i]) < 0.00001); } } - // std::cout << static_cast<Tensor>((*myAvgPool->getOperator())["weight"])[0][0][0][0] << std::endl; + // std::cout << static_cast<Tensor>((*op)["weight"])[0][0][0][0] << std::endl; } \ No newline at end of file diff --git a/unit_tests/operator/Test_BatchNormImpl.cpp b/unit_tests/operator/Test_BatchNormImpl.cpp index e6107a028e0c3d62f69821ff2650b45f34da103f..e6b7c3c655b865973028fc8c43323a7db3f4a5ef 100644 --- a/unit_tests/operator/Test_BatchNormImpl.cpp +++ b/unit_tests/operator/Test_BatchNormImpl.cpp @@ -19,10 +19,9 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] BatchNorm(forward)") { +TEST_CASE("[cpu/operator] BatchNorm(forward)", "[BatchNorm][CPU]") { std::shared_ptr<Node> myBatchNorm = BatchNorm<2>(0.00001F, 0.1F, "mybatchnorm"); - myBatchNorm->getOperator()->setDatatype(DataType::Float32); - myBatchNorm->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myBatchNorm -> getOperator()); std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array1D<float,3> {{0.9044, 0.3028, 0.0218}}); std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(Array1D<float,3> {{0.1332, 0.7503, 0.0878}}); std::shared_ptr<Tensor> myMean = std::make_shared<Tensor>(Array1D<float,3> {{0.9931, 0.8421, 0.9936}}); @@ -53,7 +52,7 @@ TEST_CASE("[cpu/operator] BatchNorm(forward)") { } } }); - std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<float,2,3,3,3> { + std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<float,2,3,3,3> { { { {{-0.08978321, -0.12890550, -0.21362889}, @@ -79,19 +78,21 @@ TEST_CASE("[cpu/operator] BatchNorm(forward)") { } } }); - myBatchNorm->getOperator()->associateInput(0,myInput); - myBatchNorm->getOperator()->associateInput(1,myWeights); - myBatchNorm->getOperator()->associateInput(2,myBias); - myBatchNorm->getOperator()->associateInput(3,myMean); - myBatchNorm->getOperator()->associateInput(4,myVar); - myBatchNorm->getOperator()->computeOutputDims(); + op->associateInput(0,myInput); + op->associateInput(1,myWeights); + op->associateInput(2,myBias); + op->associateInput(3,myMean); + op->associateInput(4,myVar); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + op->computeOutputDims(); myBatchNorm->forward(); - float* resPtr = static_cast<float*>(myBatchNorm->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(myOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 54; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); } - // std::cout << static_cast<Tensor>((*myBatchNorm->getOperator())["weight"])[0][0][0][0] << std::endl; + // std::cout << static_cast<Tensor>((*op)["weight"])[0][0][0][0] << std::endl; } \ No newline at end of file diff --git a/unit_tests/operator/Test_ConcatImpl.cpp b/unit_tests/operator/Test_ConcatImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7f616fcb30cd51efb790fe725d423600901f2976 --- /dev/null +++ b/unit_tests/operator/Test_ConcatImpl.cpp @@ -0,0 +1,147 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Add.hpp" + +#include "aidge/backend/cpu.hpp" + +using namespace Aidge; + +TEST_CASE("[cpu/operator] Concat(forward)", "[Concat][CPU]") { + SECTION("Concat 1D inputs") { + std::shared_ptr<Tensor> input1 = std::make_shared<Tensor>(Array1D<int,2>{{ 2, 3 }}); + std::shared_ptr<Tensor> input2 = std::make_shared<Tensor>(Array1D<int,3>{{ 4, 5, 6 }}); + std::shared_ptr<Tensor> input3 = std::make_shared<Tensor>(Array1D<int,4>{{ 7, 8, 9, 10 }}); + std::shared_ptr<Tensor> input4 = std::make_shared<Tensor>(Array1D<int,5>{{ 11, 12, 13, 14, 15 }}); + std::shared_ptr<Tensor> input5 = std::make_shared<Tensor>(Array1D<int,6>{{ 16, 17, 18, 19, 20, 21 }}); + + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<int,20>{ + { 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,15,16,17,18,19,20,21 }}); + + auto myConcat = Concat(5, 0); + myConcat->getOperator()->associateInput(0, input1); + myConcat->getOperator()->associateInput(1, input2); + myConcat->getOperator()->associateInput(2, input3); + myConcat->getOperator()->associateInput(3, input4); + myConcat->getOperator()->associateInput(4, input5); + myConcat->getOperator()->setBackend("cpu"); + myConcat->getOperator()->setDataType(DataType::Int32); + std::static_pointer_cast<OperatorTensor>(myConcat->getOperator())->computeOutputDims(); + myConcat->forward(); + + std::static_pointer_cast<Tensor>(myConcat->getOperator()->getRawOutput(0))->print(); + + REQUIRE(*std::static_pointer_cast<OperatorTensor>(myConcat->getOperator())->getOutput(0) == *expectedOutput); + } + SECTION("Concat 4D inputs on 1st axis") { + std::shared_ptr<Tensor> input1 = std::make_shared<Tensor>(Array4D<int,1,3,3,2> { + { // + { // + {{20, 47},{21, 48},{22, 49}}, // + {{23, 50},{24, 51},{25, 52}}, // + {{26, 53},{27, 54},{28, 55}} // + }, // + } // + }); // + std::shared_ptr<Tensor> input2 = std::make_shared<Tensor>(Array4D<int,2,3,3,2> { + { + { // + {{29, 56},{30, 57},{31, 58}}, // + {{32, 59},{33, 60},{34, 61}}, // + {{35, 62},{36, 63},{37, 64}} // + }, // + { // + {{38, 65},{39, 66},{40, 67}}, // + {{41, 68},{42, 69},{43, 70}}, // + {{44, 71},{45, 72},{46, 73}} // + } // + } // + }); // + + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array4D<int,3,3,3,2> { + { // + { // + {{20, 47},{21, 48},{22, 49}}, // + {{23, 50},{24, 51},{25, 52}}, // + {{26, 53},{27, 54},{28, 55}} // + }, // + { // + {{29, 56},{30, 57},{31, 58}}, // + {{32, 59},{33, 60},{34, 61}}, // + {{35, 62},{36, 63},{37, 64}} // + }, // + { // + {{38, 65},{39, 66},{40, 67}}, // + {{41, 68},{42, 69},{43, 70}}, // + {{44, 71},{45, 72},{46, 73}} // + } // + } // + }); // + + auto myConcat = Concat(2, 0); + myConcat->getOperator()->associateInput(0, input1); + myConcat->getOperator()->associateInput(1, input2); + myConcat->getOperator()->setBackend("cpu"); + myConcat->getOperator()->setDataType(DataType::Int32); + std::static_pointer_cast<OperatorTensor>(myConcat->getOperator())->computeOutputDims(); + myConcat->forward(); + + std::static_pointer_cast<OperatorTensor>(myConcat->getOperator())->getOutput(0)->print(); + + REQUIRE(*std::static_pointer_cast<OperatorTensor>(myConcat->getOperator())->getOutput(0) == *expectedOutput); + } + + SECTION("Concat 4D inputs on 3rd axis") { + std::shared_ptr<Tensor> input1 = std::make_shared<Tensor>(Array4D<int,1,3,3,2> { + { // + { // + {{20, 47},{21, 48},{22, 49}}, // + {{23, 50},{24, 51},{25, 52}}, // + {{26, 53},{27, 54},{28, 55}} // + }, // + } // + }); // + std::shared_ptr<Tensor> input2 = std::make_shared<Tensor>(Array4D<int,1,3,6,2> { + { + { // + {{29, 56},{30, 57},{31, 58},{38, 65},{39, 66},{40, 67}}, // + {{32, 59},{33, 60},{34, 61},{41, 68},{42, 69},{43, 70}}, // + {{35, 62},{36, 63},{37, 64},{44, 71},{45, 72},{46, 73}} // + }, + } + }); + + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array4D<int,1,3,9,2> { + { // + { // + {{20, 47},{21, 48},{22, 49},{29, 56},{30, 57},{31, 58},{38, 65},{39, 66},{40, 67}}, // + {{23, 50},{24, 51},{25, 52},{32, 59},{33, 60},{34, 61},{41, 68},{42, 69},{43, 70}}, // + {{26, 53},{27, 54},{28, 55},{35, 62},{36, 63},{37, 64},{44, 71},{45, 72},{46, 73}} // + }, // + } // + }); // + + auto myConcat = Concat(2, 2); + myConcat->getOperator()->associateInput(0, input1); + myConcat->getOperator()->associateInput(1, input2); + myConcat->getOperator()->setBackend("cpu"); + myConcat->getOperator()->setDataType(DataType::Int32); + std::static_pointer_cast<OperatorTensor>(myConcat->getOperator())->computeOutputDims(); + myConcat->forward(); + + std::static_pointer_cast<Tensor>(myConcat->getOperator()->getRawOutput(0))->print(); + + REQUIRE(*std::static_pointer_cast<OperatorTensor>(myConcat->getOperator())->getOutput(0) == *expectedOutput); + } +} \ No newline at end of file diff --git a/unit_tests/operator/Test_ConvDepthWiseImpl.cpp b/unit_tests/operator/Test_ConvDepthWiseImpl.cpp index 0d0ed4b928d64cafc96907fedf3ee0d642a255d0..112703b64162004ab708f143d6e12b0c8bb9c6b6 100644 --- a/unit_tests/operator/Test_ConvDepthWiseImpl.cpp +++ b/unit_tests/operator/Test_ConvDepthWiseImpl.cpp @@ -19,34 +19,33 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] ConvDepthWise(forward)") { - std::shared_ptr<Node> myCDW = ConvDepthWise({3,3}, "mycdw"); - myCDW->getOperator()->setDatatype(DataType::Int32); - myCDW->getOperator()->setBackend("cpu"); - std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array3D<int,4,3,3> { +TEST_CASE("[cpu/operator] ConvDepthWise(forward)", "[ConvDepthWise][CPU]") { + std::shared_ptr<Node> myCDW = ConvDepthWise(4, {3,3}, "mycdw"); + auto op = std::static_pointer_cast<OperatorTensor>(myCDW -> getOperator()); + std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array4D<int,4,1,3,3> { { - { + {{ { 0, 1, 2}, { 3, 4, 5}, { 6, 7, 8} - }, - { + }}, + {{ { 27, 28, 29}, { 30, 31, 32}, { 33, 34, 35} - }, - { + }}, + {{ { 54, 55, 56}, { 57, 58, 59}, { 60, 61, 62} - }, - { + }}, + {{ { 81, 82, 83}, { 84, 85, 86}, { 87, 88, 89} - } + }} } }); std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(Array1D<int,4> {{7,0,9,0}}); @@ -104,7 +103,7 @@ TEST_CASE("[cpu/operator] ConvDepthWise(forward)") { } } }); - std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<int,2,4,3,3> { + std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<int,2,4,3,3> { { { {{ 319, 355, 391}, @@ -142,13 +141,15 @@ TEST_CASE("[cpu/operator] ConvDepthWise(forward)") { } } }); - myCDW->getOperator()->associateInput(0,myInput); - myCDW->getOperator()->associateInput(1,myWeights); - myCDW->getOperator()->associateInput(2,myBias); - myCDW->getOperator()->computeOutputDims(); - myCDW->forward(); - myCDW->getOperator()->getOutput(0)->print(); - REQUIRE(*(myCDW->getOperator()->getOutput(0)) == *myOutput); - - // std::cout << static_cast<Tensor>((*myCDW->getOperator())["weight"])[0][0][0][0] << std::endl; + op -> associateInput(0, myInput); + op -> associateInput(1, myWeights); + op -> associateInput(2, myBias); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op -> computeOutputDims(); + myCDW -> forward(); + op -> getOutput(0) -> print(); + REQUIRE(*(op -> getOutput(0)) == *myOutput); + + // std::cout << static_cast<Tensor>((*op)["weight"])[0][0][0][0] << std::endl; } \ No newline at end of file diff --git a/unit_tests/operator/Test_ConvImpl.cpp b/unit_tests/operator/Test_ConvImpl.cpp index 891f0e94b02d07d41751728e83fa9b42e4b89be8..0f46e8f6405366a32f45ce61d61fc94afabdd4a8 100644 --- a/unit_tests/operator/Test_ConvImpl.cpp +++ b/unit_tests/operator/Test_ConvImpl.cpp @@ -20,11 +20,10 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] Conv(forward)") { +TEST_CASE("[cpu/operator] Conv(forward)", "[Conv][CPU]") { SECTION("Classic Conv") { std::shared_ptr<Node> myConv = Conv(3,4,{3,3}, "myconv"); - myConv->getOperator()->setDatatype(DataType::Int32); - myConv->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myConv -> getOperator()); std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array4D<int,4,3,3,3> { { { @@ -116,7 +115,7 @@ TEST_CASE("[cpu/operator] Conv(forward)") { } } }); - std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<int,2,4,3,3> { + std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<int,2,4,3,3> { { { {{ 15226, 15577, 15928}, @@ -148,19 +147,20 @@ TEST_CASE("[cpu/operator] Conv(forward)") { } } }); - myConv->getOperator()->associateInput(0,myInput); - myConv->getOperator()->associateInput(1,myWeights); - myConv->getOperator()->associateInput(2,myBias); - myConv->getOperator()->computeOutputDims(); + op->associateInput(0,myInput); + op->associateInput(1,myWeights); + op->associateInput(2,myBias); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myConv->forward(); - // myConv->getOperator()->getOutput(0)->print(); - REQUIRE(*(myConv->getOperator()->getOutput(0)) == *myOutput); + // op->getOutput(0)->print(); + REQUIRE(*(op->getOutput(0)) == *myOutput); } SECTION("Point-wise") { std::shared_ptr<Node> myConv = Conv(3,4,{1,1}, "myconv", {1,1}); - myConv->getOperator()->setDatatype(DataType::Float32); - myConv->getOperator()->setBackend("cpu"); - myConv->getOperator()->input(0) = Array4D<float,2,3,3,3> { + auto op = std::static_pointer_cast<OperatorTensor>(myConv -> getOperator()); + op->setInput(0, std::make_shared<Tensor>(Array4D<float,2,3,3,3> { { { {{-1.38467371F, -0.87123615F, -0.22336592F}, @@ -185,8 +185,8 @@ TEST_CASE("[cpu/operator] Conv(forward)") { { 0.09811721F, 1.74225271F, -1.35267365F}} } } - }; - myConv->getOperator()->input(1) = Array4D<float,4,3,1,1> { + })); + op->setInput(1, std::make_shared<Tensor>(Array4D<float,4,3,1,1> { { { {{ 0.33669037F}}, @@ -208,8 +208,8 @@ TEST_CASE("[cpu/operator] Conv(forward)") { {{ 0.80935723F}} } } - }; - myConv->getOperator()->input(2) = Array1D<float,4> {{ 1.11029029F, -1.68979895F, -0.98895991F, 0.95797181F}}; + })); + op->setInput(2, std::make_shared<Tensor>(Array1D<float,4> {{ 1.11029029F, -1.68979895F, -0.98895991F, 0.95797181F}})); Tensor expectedOutput = Array4D<float,2,4,3,3> { { { @@ -242,11 +242,12 @@ TEST_CASE("[cpu/operator] Conv(forward)") { } } }; - - myConv->getOperator()->computeOutputDims(); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + op->computeOutputDims(); myConv->forward(); - - float* resPtr = static_cast<float*>(myConv->getOperator()->getOutput(0)->getImpl()->rawPtr()); + + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput.getImpl()->rawPtr()); for (std::size_t i = 0; i< expectedOutput.size(); ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); diff --git a/unit_tests/operator/Test_DivImpl.cpp b/unit_tests/operator/Test_DivImpl.cpp index c33319c88b63ee834bbcb388bbbe0775699edbd7..16f69db964a092f6be87e5d983ba00694e8006f8 100644 --- a/unit_tests/operator/Test_DivImpl.cpp +++ b/unit_tests/operator/Test_DivImpl.cpp @@ -20,7 +20,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] Div(forward)") { +TEST_CASE("[cpu/operator] Div(forward)", "[Div][CPU]") { SECTION("2D Tensor by Singleton") { std::shared_ptr<Tensor> input_1 = std::make_shared<Tensor>(Array2D<float,2,2> { { @@ -37,14 +37,15 @@ TEST_CASE("[cpu/operator] Div(forward)") { }); std::shared_ptr<Node> myDiv = Div(); - myDiv->getOperator()->setDatatype(DataType::Float32); - myDiv->getOperator()->setBackend("cpu"); - myDiv->getOperator()->associateInput(0, input_1); - myDiv->getOperator()->associateInput(1, input_2); - myDiv->getOperator()->computeOutputDims(); - myDiv->forward(); - - float* resPtr = static_cast<float*>(myDiv->getOperator()->getOutput(0)->getImpl()->rawPtr()); + auto op = std::static_pointer_cast<OperatorTensor>(myDiv -> getOperator()); + op -> associateInput(0, input_1); + op -> associateInput(1, input_2); + op -> setDataType(DataType::Float32); + op -> setBackend("cpu"); + op -> computeOutputDims(); + myDiv -> forward(); + + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 4; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -73,14 +74,15 @@ TEST_CASE("[cpu/operator] Div(forward)") { }); std::shared_ptr<Node> myDiv = Div(); - myDiv->getOperator()->setDatatype(DataType::Float32); - myDiv->getOperator()->setBackend("cpu"); - myDiv->getOperator()->associateInput(0, input_1); - myDiv->getOperator()->associateInput(1, input_2); - myDiv->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myDiv -> getOperator()); + op -> associateInput(0, input_1); + op -> associateInput(1, input_2); + op -> setDataType(DataType::Float32); + op -> setBackend("cpu"); + op -> computeOutputDims(); myDiv->forward(); - float* resPtr = static_cast<float*>(myDiv->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 4; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -112,14 +114,15 @@ TEST_CASE("[cpu/operator] Div(forward)") { }); std::shared_ptr<Node> myDiv = Div(); - myDiv->getOperator()->setDatatype(DataType::Float32); - myDiv->getOperator()->setBackend("cpu"); - myDiv->getOperator()->associateInput(0, input_1); - myDiv->getOperator()->associateInput(1, input_2); - myDiv->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myDiv -> getOperator()); + op -> associateInput(0, input_1); + op -> associateInput(1, input_2); + op -> setDataType(DataType::Float32); + op -> setBackend("cpu"); + op -> computeOutputDims(); myDiv->forward(); - float* resPtr = static_cast<float*>(myDiv->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 12; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -191,14 +194,15 @@ TEST_CASE("[cpu/operator] Div(forward)") { }); std::shared_ptr<Node> myDiv = Div(); - myDiv->getOperator()->setDatatype(DataType::Float32); - myDiv->getOperator()->setBackend("cpu"); - myDiv->getOperator()->associateInput(0, input_1); - myDiv->getOperator()->associateInput(1, input_2); - myDiv->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myDiv -> getOperator()); + op -> associateInput(0, input_1); + op -> associateInput(1, input_2); + op -> setDataType(DataType::Float32); + op -> setBackend("cpu"); + op -> computeOutputDims(); myDiv->forward(); - float* resPtr = static_cast<float*>(myDiv->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 54; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); diff --git a/unit_tests/operator/Test_FCImpl.cpp b/unit_tests/operator/Test_FCImpl.cpp index e3494e20205f1a295eb537100b59fb7bbc26116a..4309ce1a54f14b1da0c8b173cb46992109ee034b 100644 --- a/unit_tests/operator/Test_FCImpl.cpp +++ b/unit_tests/operator/Test_FCImpl.cpp @@ -19,7 +19,7 @@ using namespace Aidge; -TEST_CASE("[cpu/oeprator] FC(forward)") { +TEST_CASE("[cpu/oeprator] FC(forward)", "[FC][CPU]") { std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array2D<int, 5, 75>{ {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, @@ -45,11 +45,10 @@ TEST_CASE("[cpu/oeprator] FC(forward)") { std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array2D<int, 2, 5>{ {{23601, 23602, 23603, 23604, 23605}, {68601, 68602, 68603, 68604, 68605}}}); - std::shared_ptr<Node> myFC = FC(5, false, "myfc"); - myFC->getOperator()->setDatatype(DataType::Int32); - myFC->getOperator()->setBackend("cpu"); - myFC->getOperator()->associateInput(1, myWeights); - myFC->getOperator()->associateInput(2, myBias); + std::shared_ptr<Node> myFC = FC(75, 5, false, "myfc"); + auto op = std::static_pointer_cast<OperatorTensor>(myFC -> getOperator()); + op -> associateInput(1, myWeights); + op -> associateInput(2, myBias); SECTION("2D input") { std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array2D<int, 2, 75>{ @@ -62,10 +61,12 @@ TEST_CASE("[cpu/oeprator] FC(forward)") { 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149}}}); - myFC->getOperator()->associateInput(0, myInput); - myFC->getOperator()->computeOutputDims(); + op->associateInput(0, myInput); + op -> setDataType(DataType::Int32); + op -> setBackend("cpu"); + op->computeOutputDims(); myFC->forward(); - REQUIRE(*std::static_pointer_cast<Tensor>(myFC->getOperator()->getOutput(0)) == *myOutput); + REQUIRE(*(op->getOutput(0)) == *myOutput); } SECTION("4D input") { std::shared_ptr<Tensor> myInput = @@ -99,10 +100,12 @@ TEST_CASE("[cpu/oeprator] FC(forward)") { {135, 136, 137, 138, 139}, {140, 141, 142, 143, 144}, {145, 146, 147, 148, 149}}}}}); - myFC->getOperator()->associateInput(0, myInput); - myFC->getOperator()->computeOutputDims(); + op->associateInput(0, myInput); + op -> setDataType(DataType::Int32); + op -> setBackend("cpu"); + op->computeOutputDims(); myFC->forward(); - REQUIRE(*std::static_pointer_cast<Tensor>(myFC->getOperator()->getOutput(0)) == *myOutput); + REQUIRE(*(op->getOutput(0)) == *myOutput); } // std::cout << static_cast<Tensor>((*myFC->getOperator())["weight"])[0][0][0][0] << std::endl; diff --git a/unit_tests/operator/Test_LeakyReLUImpl.cpp b/unit_tests/operator/Test_LeakyReLUImpl.cpp index d5bd91ff75404a7b928c8919c64e06315b78206f..cad2a6f97a31e4e2200a8c8ceb1d9dde7b118362 100644 --- a/unit_tests/operator/Test_LeakyReLUImpl.cpp +++ b/unit_tests/operator/Test_LeakyReLUImpl.cpp @@ -18,7 +18,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] LeakyReLU(forward)") { +TEST_CASE("[cpu/operator] LeakyReLU(forward)", "[LeakyReLU][CPU]") { SECTION("1D Tensor") { std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array1D<int,10> { {0, 1, 2,-3, 4,-5,-6, 7, 8, 9} @@ -28,12 +28,13 @@ TEST_CASE("[cpu/operator] LeakyReLU(forward)") { }); std::shared_ptr<Node> myLeakyReLU = LeakyReLU(); - myLeakyReLU->getOperator()->setDatatype(DataType::Int32); - myLeakyReLU->getOperator()->setBackend("cpu"); - myLeakyReLU->getOperator()->associateInput(0,input0); - myLeakyReLU->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myLeakyReLU -> getOperator()); + op->associateInput(0,input0); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myLeakyReLU->forward(); - REQUIRE(*std::static_pointer_cast<Tensor>(myLeakyReLU->getOperator()->getOutput(0)) == *expectedOutput); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); } SECTION("2D Tensor") { @@ -51,12 +52,13 @@ TEST_CASE("[cpu/operator] LeakyReLU(forward)") { }); std::shared_ptr<Node> myLeakyReLU = LeakyReLU(); - myLeakyReLU->getOperator()->setDatatype(DataType::Int32); - myLeakyReLU->getOperator()->setBackend("cpu"); - myLeakyReLU->getOperator()->associateInput(0,input0); - myLeakyReLU->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myLeakyReLU -> getOperator()); + op->associateInput(0,input0); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myLeakyReLU->forward(); - REQUIRE(*myLeakyReLU->getOperator()->getOutput(0) == *expectedOutput); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); } SECTION("3D Tensor") { @@ -86,12 +88,13 @@ TEST_CASE("[cpu/operator] LeakyReLU(forward)") { }); std::shared_ptr<Node> myLeakyReLU = LeakyReLU(); - myLeakyReLU->getOperator()->setDatatype(DataType::Int32); - myLeakyReLU->getOperator()->setBackend("cpu"); - myLeakyReLU->getOperator()->associateInput(0,input0); - myLeakyReLU->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myLeakyReLU -> getOperator()); + op->associateInput(0,input0); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myLeakyReLU->forward(); - REQUIRE(*myLeakyReLU->getOperator()->getOutput(0) == *expectedOutput); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); } SECTION("4D Tensor") { @@ -145,12 +148,13 @@ TEST_CASE("[cpu/operator] LeakyReLU(forward)") { }); std::shared_ptr<Node> myLeakyReLU = LeakyReLU(); - myLeakyReLU->getOperator()->setDatatype(DataType::Int32); - myLeakyReLU->getOperator()->setBackend("cpu"); - myLeakyReLU->getOperator()->associateInput(0,input0); - myLeakyReLU->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myLeakyReLU -> getOperator()); + op->associateInput(0,input0); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myLeakyReLU->forward(); - REQUIRE(*myLeakyReLU->getOperator()->getOutput(0) == *expectedOutput); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); } SECTION("Test construction attribute: negative_slop") { @@ -162,11 +166,12 @@ TEST_CASE("[cpu/operator] LeakyReLU(forward)") { }); std::shared_ptr<Node> myLeakyReLU = LeakyReLU(0.5f); - myLeakyReLU->getOperator()->setDatatype(DataType::Float32); - myLeakyReLU->getOperator()->setBackend("cpu"); - myLeakyReLU->getOperator()->associateInput(0,input0); - myLeakyReLU->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myLeakyReLU -> getOperator()); + op->associateInput(0,input0); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + op->computeOutputDims(); myLeakyReLU->forward(); - REQUIRE(*myLeakyReLU->getOperator()->getOutput(0) == *expectedOutput); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); } } \ No newline at end of file diff --git a/unit_tests/operator/Test_MatMulImpl.cpp b/unit_tests/operator/Test_MatMulImpl.cpp index 0da01b3287043e07e5b967df8882960cfb814f8f..1edb915fb78e3e056f455ddecb8e704eee068cd9 100644 --- a/unit_tests/operator/Test_MatMulImpl.cpp +++ b/unit_tests/operator/Test_MatMulImpl.cpp @@ -19,7 +19,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul]") { +TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") { // Test MatMul forward with batch size = 2 and feature size = 75 std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array2D<int, 5, 75>{ {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, @@ -45,10 +45,9 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul]") { std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array2D<int, 2, 5>{ {{23600, 23600, 23600, 23600, 23600}, {68600, 68600, 68600, 68600, 68600}}}); - std::shared_ptr<Node> myMatMul = MatMul(5, "mymatmul"); - myMatMul->getOperator()->setDatatype(DataType::Int32); - myMatMul->getOperator()->setBackend("cpu"); - myMatMul->getOperator()->associateInput(1, myWeights); + std::shared_ptr<Node> myMatMul = MatMul(75, 5, "mymatmul"); + auto op = std::static_pointer_cast<OperatorTensor>(myMatMul -> getOperator()); + op->associateInput(1, myWeights); SECTION("2D input") { std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array2D<int, 2, 75>{ @@ -61,10 +60,12 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul]") { 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149}}}); - myMatMul->getOperator()->associateInput(0, myInput); - myMatMul->getOperator()->computeOutputDims(); + op->associateInput(0, myInput); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myMatMul->forward(); - REQUIRE(*std::static_pointer_cast<Tensor>(myMatMul->getOperator()->getOutput(0)) == *myOutput); + REQUIRE(*(op->getOutput(0)) == *myOutput); } SECTION("4D input") { std::shared_ptr<Tensor> myInput = @@ -98,10 +99,12 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul]") { {135, 136, 137, 138, 139}, {140, 141, 142, 143, 144}, {145, 146, 147, 148, 149}}}}}); - myMatMul->getOperator()->associateInput(0, myInput); - myMatMul->getOperator()->computeOutputDims(); + op->associateInput(0, myInput); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myMatMul->forward(); - REQUIRE(*std::static_pointer_cast<Tensor>(myMatMul->getOperator()->getOutput(0)) == *myOutput); + REQUIRE(*(op->getOutput(0)) == *myOutput); } // std::cout << static_cast<Tensor>((*myMatMul->getOperator())["weight"])[0][0][0][0] << std::endl; diff --git a/unit_tests/operator/Test_MaxPoolingImpl.cpp b/unit_tests/operator/Test_MaxPoolingImpl.cpp index 83fa7eaa670399c8d6c085a14db08fa35df9de8c..9f528f2d044cf43133f3729a7f0e4f1bd95b8889 100644 --- a/unit_tests/operator/Test_MaxPoolingImpl.cpp +++ b/unit_tests/operator/Test_MaxPoolingImpl.cpp @@ -21,7 +21,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] MaxPooling(forward)") { +TEST_CASE("[cpu/operator] MaxPooling(forward)", "[MaxPooling][CPU]") { std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<float,2,2,5,5> { //NCHW { { @@ -54,10 +54,9 @@ TEST_CASE("[cpu/operator] MaxPooling(forward)") { }); SECTION("Stride") { std::shared_ptr<Node> myMaxPool = MaxPooling({2,2}, "mycdw", {2,2}); - myMaxPool->getOperator()->setDatatype(DataType::Float32); - myMaxPool->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myMaxPool -> getOperator()); - std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<float,2,2,2,2> { + std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<float,2,2,2,2> { { { {{ 0.7995, 0.6142}, @@ -74,9 +73,11 @@ TEST_CASE("[cpu/operator] MaxPooling(forward)") { } }); myMaxPool->getOperator()->associateInput(0,myInput); - myMaxPool->getOperator()->computeOutputDims(); + myMaxPool->getOperator()->setDataType(DataType::Float32); + myMaxPool->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myMaxPool->forward(); - myMaxPool->getOperator()->getOutput(0)->print(); - REQUIRE(*(myMaxPool->getOperator()->getOutput(0)) == *myOutput); + op->getOutput(0)->print(); + REQUIRE(*(op->getOutput(0)) == *myOutput); } } \ No newline at end of file diff --git a/unit_tests/operator/Test_MulImpl.cpp b/unit_tests/operator/Test_MulImpl.cpp index cea62f998cfc538d1d5800639e461eb4d15cb270..1707bc81e0bb549bfe90078242f8a4eae77db3c3 100644 --- a/unit_tests/operator/Test_MulImpl.cpp +++ b/unit_tests/operator/Test_MulImpl.cpp @@ -20,7 +20,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] Mul(forward)") { +TEST_CASE("[cpu/operator] Mul(forward)", "[Mul][CPU]") { SECTION("2D Tensor by Singleton") { std::shared_ptr<Tensor> input_1 = std::make_shared<Tensor>(Array2D<float,2,2> { { @@ -37,14 +37,15 @@ TEST_CASE("[cpu/operator] Mul(forward)") { }); std::shared_ptr<Node> myMul = Mul(); - myMul->getOperator()->setDatatype(DataType::Float32); - myMul->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myMul -> getOperator()); myMul->getOperator()->associateInput(0, input_1); myMul->getOperator()->associateInput(1, input_2); - myMul->getOperator()->computeOutputDims(); + myMul->getOperator()->setDataType(DataType::Float32); + myMul->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myMul->forward(); - float* resPtr = static_cast<float*>(myMul->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 4; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -73,14 +74,15 @@ TEST_CASE("[cpu/operator] Mul(forward)") { }); std::shared_ptr<Node> myMul = Mul(); - myMul->getOperator()->setDatatype(DataType::Float32); - myMul->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myMul -> getOperator()); myMul->getOperator()->associateInput(0, input_1); myMul->getOperator()->associateInput(1, input_2); - myMul->getOperator()->computeOutputDims(); + myMul->getOperator()->setDataType(DataType::Float32); + myMul->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myMul->forward(); - float* resPtr = static_cast<float*>(myMul->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 4; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -112,14 +114,15 @@ TEST_CASE("[cpu/operator] Mul(forward)") { }); std::shared_ptr<Node> myMul = Mul(); - myMul->getOperator()->setDatatype(DataType::Float32); - myMul->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myMul -> getOperator()); myMul->getOperator()->associateInput(0, input_1); myMul->getOperator()->associateInput(1, input_2); - myMul->getOperator()->computeOutputDims(); + myMul->getOperator()->setDataType(DataType::Float32); + myMul->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myMul->forward(); - float* resPtr = static_cast<float*>(myMul->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 12; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); diff --git a/unit_tests/operator/Test_PadImpl.cpp b/unit_tests/operator/Test_PadImpl.cpp index b603e165392f1a861dc1b40d50b70a53c9256870..edcdaa9623e4a788f515ee99491accffcef576af 100644 --- a/unit_tests/operator/Test_PadImpl.cpp +++ b/unit_tests/operator/Test_PadImpl.cpp @@ -20,13 +20,12 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] Pad(forward)") { +TEST_CASE("[cpu/operator] Pad(forward)", "[Pad][CPU]") { SECTION("Symmetric Pad") { const int pv = 0; // pad value std::shared_ptr<Node> myPad = Pad<2>({1, 1, 1, 1}, "mypad", PadBorderType::Constant, static_cast<double>(pv)); - myPad->getOperator()->setDatatype(DataType::Int32); - myPad->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myPad -> getOperator()); std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<int,2,3,5,5> { //NCHW { { @@ -125,18 +124,19 @@ TEST_CASE("[cpu/operator] Pad(forward)") { }); myPad->getOperator()->associateInput(0,myInput); - myPad->getOperator()->computeOutputDims(); + myPad->getOperator()->setDataType(DataType::Int32); + myPad->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myPad->forward(); // myPad->getOperator()->getOutput(0)->print(); - REQUIRE(*(myPad->getOperator()->getOutput(0)) == *myOutput); + REQUIRE(*(op->getOutput(0)) == *myOutput); } SECTION("Asymmetric Pad") { const int pv = 0; // pad value std::shared_ptr<Node> myPad = Pad<2>({1, 0, 0, 1}, "mypad", PadBorderType::Constant, static_cast<double>(pv)); - myPad->getOperator()->setDatatype(DataType::Int32); - myPad->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myPad -> getOperator()); std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<int,2,3,5,5> { //NCHW { { @@ -229,16 +229,17 @@ TEST_CASE("[cpu/operator] Pad(forward)") { }); myPad->getOperator()->associateInput(0,myInput); - myPad->getOperator()->computeOutputDims(); + myPad->getOperator()->setDataType(DataType::Int32); + myPad->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myPad->forward(); // myPad->getOperator()->getOutput(0)->print(); - REQUIRE(*(myPad->getOperator()->getOutput(0)) == *myOutput); + REQUIRE(*(op->getOutput(0)) == *myOutput); } SECTION("Pad Edge") { std::shared_ptr<Node> myPad = Pad<2>({1, 1, 1, 1}, "mypad", PadBorderType::Edge); - myPad->getOperator()->setDatatype(DataType::Int32); - myPad->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myPad -> getOperator()); std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<int,2,3,5,5> { //NCHW { { @@ -337,16 +338,17 @@ TEST_CASE("[cpu/operator] Pad(forward)") { }); myPad->getOperator()->associateInput(0,myInput); - myPad->getOperator()->computeOutputDims(); + myPad->getOperator()->setDataType(DataType::Int32); + myPad->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myPad->forward(); // myPad->getOperator()->getOutput(0)->print(); - REQUIRE(*(myPad->getOperator()->getOutput(0)) == *myOutput); + REQUIRE(*(op->getOutput(0)) == *myOutput); } SECTION("Pad Reflect") { std::shared_ptr<Node> myPad = Pad<2>({1, 1, 1, 1}, "mypad", PadBorderType::Reflect); - myPad->getOperator()->setDatatype(DataType::Int32); - myPad->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myPad -> getOperator()); std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<int,2,3,5,5> { //NCHW { { @@ -453,16 +455,17 @@ TEST_CASE("[cpu/operator] Pad(forward)") { }); myPad->getOperator()->associateInput(0,myInput); - myPad->getOperator()->computeOutputDims(); + myPad->getOperator()->setDataType(DataType::Int32); + myPad->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myPad->forward(); - myPad->getOperator()->getOutput(0)->print(); - REQUIRE(*(myPad->getOperator()->getOutput(0)) == *myOutput); + op->getOutput(0)->print(); + REQUIRE(*(op->getOutput(0)) == *myOutput); } SECTION("Pad Wrap") { std::shared_ptr<Node> myPad = Pad<2>({1, 1, 1, 1}, "mypad", PadBorderType::Wrap); - myPad->getOperator()->setDatatype(DataType::Int32); - myPad->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myPad -> getOperator()); std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<int,2,3,5,5> { //NCHW { { @@ -561,9 +564,11 @@ TEST_CASE("[cpu/operator] Pad(forward)") { }); myPad->getOperator()->associateInput(0,myInput); - myPad->getOperator()->computeOutputDims(); + myPad->getOperator()->setDataType(DataType::Int32); + myPad->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myPad->forward(); // myPad->getOperator()->getOutput(0)->print(); - REQUIRE(*(myPad->getOperator()->getOutput(0)) == *myOutput); + REQUIRE(*(op->getOutput(0)) == *myOutput); } } \ No newline at end of file diff --git a/unit_tests/operator/Test_PaddedConv.cpp b/unit_tests/operator/Test_PaddedConv.cpp index e41be85ab00faae1af7239c43b74a34f558a663c..3baf0a7aa0f366a8f0dd4e3e9df6700a5cdb0cea 100644 --- a/unit_tests/operator/Test_PaddedConv.cpp +++ b/unit_tests/operator/Test_PaddedConv.cpp @@ -21,11 +21,10 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] PaddedConv(forward)") { +TEST_CASE("[cpu/operator] PaddedConv(forward)", "[PaddedConv][CPU]") { SECTION("Classic Conv") { std::shared_ptr<Node> myConv = PaddedConv(3,4,{3,3}, "myconv"); - myConv->getOperator()->setDatatype(DataType::Int32); - myConv->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myConv -> getOperator()); std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array4D<int,4,3,3,3> { { { @@ -117,7 +116,7 @@ TEST_CASE("[cpu/operator] PaddedConv(forward)") { } } }); - std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<int,2,4,3,3> { + std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<int,2,4,3,3> { { { {{ 15226, 15577, 15928}, @@ -153,15 +152,16 @@ TEST_CASE("[cpu/operator] PaddedConv(forward)") { myConv->getOperator()->associateInput(0,myInput); myConv->getOperator()->associateInput(1,myWeights); myConv->getOperator()->associateInput(2,myBias); - myConv->getOperator()->computeOutputDims(); + myConv->getOperator()->setDataType(DataType::Int32); + myConv->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myConv->forward(); - REQUIRE(*(myConv->getOperator()->getOutput(0)) == *myOutput); + REQUIRE(*(op->getOutput(0)) == *myOutput); } SECTION("test Padding") { std::shared_ptr<Node> myConv = PaddedConv(3,4,{3,3}, "myconv", {1,1}, {1,1,1,1}); - myConv->getOperator()->setDatatype(DataType::Int32); - myConv->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(myConv -> getOperator()); std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array4D<int,4,3,3,3> { { { @@ -253,7 +253,7 @@ TEST_CASE("[cpu/operator] PaddedConv(forward)") { } } }); - std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<int,2,4,5,5> { + std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<int,2,4,5,5> { { { {{ 6895, 10225, 10486, 10747, 7063}, @@ -311,9 +311,11 @@ TEST_CASE("[cpu/operator] PaddedConv(forward)") { myConv->getOperator()->associateInput(0,myInput); myConv->getOperator()->associateInput(1,myWeights); myConv->getOperator()->associateInput(2,myBias); - myConv->getOperator()->computeOutputDims(); + myConv->getOperator()->setDataType(DataType::Int32); + myConv->getOperator()->setBackend("cpu"); + op->computeOutputDims(); myConv->forward(); - REQUIRE(*(myConv->getOperator()->getOutput(0)) == *myOutput); + REQUIRE(*(op->getOutput(0)) == *myOutput); } } diff --git a/unit_tests/operator/Test_PowImpl.cpp b/unit_tests/operator/Test_PowImpl.cpp index 7293198f411510904ee73aced47b69dfc37374af..0c95e785958aca72b5ae1f5727134552310e5bef 100644 --- a/unit_tests/operator/Test_PowImpl.cpp +++ b/unit_tests/operator/Test_PowImpl.cpp @@ -20,7 +20,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] Pow(forward)") { +TEST_CASE("[cpu/operator] Pow(forward)", "[Pow][CPU]") { SECTION("2D Tensor by Singleton") { std::shared_ptr<Tensor> input_1 = std::make_shared<Tensor>(Array2D<float,2,2> { { @@ -37,14 +37,15 @@ TEST_CASE("[cpu/operator] Pow(forward)") { }); std::shared_ptr<Node> myPow = Pow(); - myPow->getOperator()->setDatatype(DataType::Float32); - myPow->getOperator()->setBackend("cpu"); - myPow->getOperator()->associateInput(0, input_1); - myPow->getOperator()->associateInput(1, input_2); - myPow->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myPow -> getOperator()); + op->associateInput(0, input_1); + op->associateInput(1, input_2); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + op->computeOutputDims(); myPow->forward(); - float* resPtr = static_cast<float*>(myPow->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 4; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -76,14 +77,15 @@ TEST_CASE("[cpu/operator] Pow(forward)") { }); std::shared_ptr<Node> myPow = Pow(); - myPow->getOperator()->setDatatype(DataType::Float32); - myPow->getOperator()->setBackend("cpu"); - myPow->getOperator()->associateInput(0, input_1); - myPow->getOperator()->associateInput(1, input_2); - myPow->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myPow -> getOperator()); + op->associateInput(0, input_1); + op->associateInput(1, input_2); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + op->computeOutputDims(); myPow->forward(); - float* resPtr = static_cast<float*>(myPow->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 12; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -112,14 +114,15 @@ TEST_CASE("[cpu/operator] Pow(forward)") { }); std::shared_ptr<Node> myPow = Pow(); - myPow->getOperator()->setDatatype(DataType::Float32); - myPow->getOperator()->setBackend("cpu"); - myPow->getOperator()->associateInput(0, input_1); - myPow->getOperator()->associateInput(1, input_2); - myPow->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myPow -> getOperator()); + op->associateInput(0, input_1); + op->associateInput(1, input_2); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + op->computeOutputDims(); myPow->forward(); - float* resPtr = static_cast<float*>(myPow->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 4; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -187,14 +190,15 @@ TEST_CASE("[cpu/operator] Pow(forward)") { }); std::shared_ptr<Node> myPow = Pow(); - myPow->getOperator()->setDatatype(DataType::Float32); - myPow->getOperator()->setBackend("cpu"); - myPow->getOperator()->associateInput(0, input_1); - myPow->getOperator()->associateInput(1, input_2); - myPow->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myPow -> getOperator()); + op->associateInput(0, input_1); + op->associateInput(1, input_2); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + op->computeOutputDims(); myPow->forward(); - float* resPtr = static_cast<float*>(myPow->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 54; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); diff --git a/unit_tests/operator/Test_ReLUImpl.cpp b/unit_tests/operator/Test_ReLUImpl.cpp index 9752a4914b5cb3cd06f2654cf64e0c193c5dd65b..c4166ac4dba75d6719fc2f38f980065126948e1f 100644 --- a/unit_tests/operator/Test_ReLUImpl.cpp +++ b/unit_tests/operator/Test_ReLUImpl.cpp @@ -21,7 +21,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] ReLU(forward)") { +TEST_CASE("[cpu/operator] ReLU(forward)", "[ReLU][CPU]") { SECTION("1D Tensor") { std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array1D<int,10> { {0, 1, 2,-3, 4,-5,-6, 7, 8, 9} @@ -31,12 +31,13 @@ TEST_CASE("[cpu/operator] ReLU(forward)") { }); std::shared_ptr<Node> myReLU = ReLU(); - myReLU->getOperator()->setDatatype(DataType::Int32); - myReLU->getOperator()->setBackend("cpu"); - myReLU->getOperator()->associateInput(0,input0); - myReLU->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myReLU -> getOperator()); + op->associateInput(0,input0); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myReLU->forward(); - REQUIRE(*(myReLU->getOperator()->getOutput(0)) == *expectedOutput); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); } SECTION("2D Tensor") { @@ -54,12 +55,13 @@ TEST_CASE("[cpu/operator] ReLU(forward)") { }); std::shared_ptr<Node> myReLU = ReLU(); - myReLU->getOperator()->setDatatype(DataType::Int32); - myReLU->getOperator()->setBackend("cpu"); - myReLU->getOperator()->associateInput(0,input0); - myReLU->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myReLU -> getOperator()); + op->associateInput(0,input0); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myReLU->forward(); - REQUIRE(*myReLU->getOperator()->getOutput(0) == *expectedOutput); + REQUIRE(*op->getOutput(0) == *expectedOutput); } SECTION("3D Tensor") { @@ -89,12 +91,13 @@ TEST_CASE("[cpu/operator] ReLU(forward)") { }); std::shared_ptr<Node> myReLU = ReLU(); - myReLU->getOperator()->setDatatype(DataType::Int32); - myReLU->getOperator()->setBackend("cpu"); - myReLU->getOperator()->associateInput(0,input0); - myReLU->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myReLU -> getOperator()); + op->associateInput(0,input0); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myReLU->forward(); - REQUIRE(*(myReLU->getOperator()->getOutput(0)) == *expectedOutput); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); } SECTION("4D Tensor") { @@ -148,11 +151,12 @@ TEST_CASE("[cpu/operator] ReLU(forward)") { }); std::shared_ptr<Node> myReLU = ReLU(); - myReLU->getOperator()->setDatatype(DataType::Int32); - myReLU->getOperator()->setBackend("cpu"); - myReLU->getOperator()->associateInput(0,input0); - myReLU->getOperator()->computeOutputDims(); + auto op = std::static_pointer_cast<OperatorTensor>(myReLU -> getOperator()); + op->associateInput(0,input0); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + op->computeOutputDims(); myReLU->forward(); - REQUIRE(*myReLU->getOperator()->getOutput(0) == *expectedOutput); + REQUIRE(*op->getOutput(0) == *expectedOutput); } } \ No newline at end of file diff --git a/unit_tests/operator/Test_SliceImpl.cpp b/unit_tests/operator/Test_SliceImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..3e25c28f9caac61c64d38fa70879af79d20392bc --- /dev/null +++ b/unit_tests/operator/Test_SliceImpl.cpp @@ -0,0 +1,166 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Slice.hpp" + +#include "aidge/backend/cpu.hpp" + +using namespace Aidge; + +TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") { + SECTION("1D Tensor") { + std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array1D<int,10> { + {0, 1, 2,-3, 4,-5,-6, 7, 8, 9} + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<int,4> { + {0, 1, 2,-3} + }); + + std::shared_ptr<Node> mySlice = Slice(0, {4}); + auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); + mySlice->getOperator()->associateInput(0,input0); + mySlice->getOperator()->setDataType(DataType::Int32); + mySlice->getOperator()->setBackend("cpu"); + op->computeOutputDims(); + mySlice->forward(); + // mySlice->getOperator()->output(0).print(); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); + REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); + } + + SECTION("2D Tensor") { + std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array2D<int,2,10> { + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + } + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<int,2,3> { + { + {-5,-6, 7}, + {-5,-6, 7} + } + }); + + std::shared_ptr<Node> mySlice = Slice(5, {2,3}); + auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); + mySlice->getOperator()->associateInput(0,input0); + mySlice->getOperator()->setDataType(DataType::Int32); + mySlice->getOperator()->setBackend("cpu"); + op->computeOutputDims(); + mySlice->forward(); + // mySlice->getOperator()->output(0).print(); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); + REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); + } + + SECTION("3D Tensor") { + std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array3D<int,2,2,10> { + { + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + }, + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + } + } + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<int,1,1,3> { + { + { + { 4,-5,-6} + } + } + }); + + std::shared_ptr<Node> mySlice = Slice(14, {1,1,3}); + auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); + mySlice->getOperator()->associateInput(0,input0); + mySlice->getOperator()->setDataType(DataType::Int32); + mySlice->getOperator()->setBackend("cpu"); + op->computeOutputDims(); + mySlice->forward(); + // mySlice->getOperator()->output(0).print(); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); + REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); + } + + SECTION("4D Tensor") { + std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array4D<int,2,2,2,10> { + { + { + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + }, + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + } + }, + { + { + { 0, 1, 2,-3, 6,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + }, + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3,11,-5,-6, 7,-1,10} + } + } + } + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array4D<int,2,2,2,10> { + { + { + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + }, + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + } + }, + { + { + { 0, 1, 2,-3, 6,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + }, + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3,11,-5,-6, 7,-1,10} + } + } + } + }); + + std::shared_ptr<Node> mySlice = Slice(0, {2,2,2,10}); + auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); + mySlice->getOperator()->associateInput(0,input0); + mySlice->getOperator()->setDataType(DataType::Int32); + mySlice->getOperator()->setBackend("cpu"); + op->computeOutputDims(); + mySlice->forward(); + // mySlice->getOperator()->output(0).print(); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); + REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); + } +} \ No newline at end of file diff --git a/unit_tests/operator/Test_SoftmaxImpl.cpp b/unit_tests/operator/Test_SoftmaxImpl.cpp index bad34102b589e3d73956f43593456d885373b3de..3d3c9fe4a0de0183e9069b814084aa80019adf0f 100644 --- a/unit_tests/operator/Test_SoftmaxImpl.cpp +++ b/unit_tests/operator/Test_SoftmaxImpl.cpp @@ -20,7 +20,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] Softmax(forward)") { +TEST_CASE("[cpu/operator] Softmax(forward)", "[Softmax][CPU]") { SECTION("2D Tensor") { std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<float,2,10> { { @@ -40,13 +40,14 @@ TEST_CASE("[cpu/operator] Softmax(forward)") { }); std::shared_ptr<Node> mySoftmax = Softmax(); - mySoftmax->getOperator()->setDatatype(DataType::Float32); - mySoftmax->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(mySoftmax -> getOperator()); mySoftmax->getOperator()->associateInput(0,input); - mySoftmax->getOperator()->computeOutputDims(); + mySoftmax->getOperator()->setDataType(DataType::Float32); + mySoftmax->getOperator()->setBackend("cpu"); + op->computeOutputDims(); mySoftmax->forward(); - float* resPtr = static_cast<float*>(mySoftmax->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 20; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -108,13 +109,14 @@ TEST_CASE("[cpu/operator] Softmax(forward)") { }); std::shared_ptr<Node> mySoftmax = Softmax(); - mySoftmax->getOperator()->setDatatype(DataType::Float32); - mySoftmax->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(mySoftmax -> getOperator()); mySoftmax->getOperator()->associateInput(0,input); - mySoftmax->getOperator()->computeOutputDims(); + mySoftmax->getOperator()->setDataType(DataType::Float32); + mySoftmax->getOperator()->setBackend("cpu"); + op->computeOutputDims(); mySoftmax->forward(); - float* resPtr = static_cast<float*>(mySoftmax->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 54; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); diff --git a/unit_tests/operator/Test_SqrtImpl.cpp b/unit_tests/operator/Test_SqrtImpl.cpp index cf17499aba50359547218adc6b3938176e729ed3..653ecf0d04907ad8f7887e79cf149d79b37a9bbc 100644 --- a/unit_tests/operator/Test_SqrtImpl.cpp +++ b/unit_tests/operator/Test_SqrtImpl.cpp @@ -20,7 +20,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] Sqrt(forward)") { +TEST_CASE("[cpu/operator] Sqrt(forward)", "[Sqrt][CPU]") { SECTION("2D Tensor") { std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<float,2,2> { { @@ -36,13 +36,14 @@ TEST_CASE("[cpu/operator] Sqrt(forward)") { }); std::shared_ptr<Node> mySqrt = Sqrt(); - mySqrt->getOperator()->setDatatype(DataType::Float32); - mySqrt->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(mySqrt -> getOperator()); mySqrt->getOperator()->associateInput(0,input); - mySqrt->getOperator()->computeOutputDims(); + mySqrt->getOperator()->setDataType(DataType::Float32); + mySqrt->getOperator()->setBackend("cpu"); + op->computeOutputDims(); mySqrt->forward(); - float* resPtr = static_cast<float*>(mySqrt->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 4; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -106,13 +107,14 @@ TEST_CASE("[cpu/operator] Sqrt(forward)") { }); std::shared_ptr<Node> mySqrt = Sqrt(); - mySqrt->getOperator()->setDatatype(DataType::Float32); - mySqrt->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(mySqrt -> getOperator()); mySqrt->getOperator()->associateInput(0,input); - mySqrt->getOperator()->computeOutputDims(); + mySqrt->getOperator()->setDataType(DataType::Float32); + mySqrt->getOperator()->setBackend("cpu"); + op->computeOutputDims(); mySqrt->forward(); - float* resPtr = static_cast<float*>(mySqrt->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 54; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); diff --git a/unit_tests/operator/Test_SubImpl.cpp b/unit_tests/operator/Test_SubImpl.cpp index d741602cf02958a88bb41bbd2927577027acb069..dfd64078b77a557e07eb11cb958ac24eeb1f9aa3 100644 --- a/unit_tests/operator/Test_SubImpl.cpp +++ b/unit_tests/operator/Test_SubImpl.cpp @@ -20,7 +20,7 @@ using namespace Aidge; -TEST_CASE("[cpu/operator] Sub(forward)") { +TEST_CASE("[cpu/operator] Sub(forward)", "[Sub][CPU]") { SECTION("2D Tensor by Singleton") { std::shared_ptr<Tensor> input_1 = std::make_shared<Tensor>(Array2D<float,2,2> { { @@ -37,14 +37,15 @@ TEST_CASE("[cpu/operator] Sub(forward)") { }); std::shared_ptr<Node> mySub = Sub(); - mySub->getOperator()->setDatatype(DataType::Float32); - mySub->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(mySub -> getOperator()); mySub->getOperator()->associateInput(0, input_1); mySub->getOperator()->associateInput(1, input_2); - mySub->getOperator()->computeOutputDims(); + mySub->getOperator()->setDataType(DataType::Float32); + mySub->getOperator()->setBackend("cpu"); + op->computeOutputDims(); mySub->forward(); - float* resPtr = static_cast<float*>(mySub->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 4; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -73,14 +74,15 @@ TEST_CASE("[cpu/operator] Sub(forward)") { }); std::shared_ptr<Node> mySub = Sub(); - mySub->getOperator()->setDatatype(DataType::Float32); - mySub->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(mySub -> getOperator()); mySub->getOperator()->associateInput(0, input_1); mySub->getOperator()->associateInput(1, input_2); - mySub->getOperator()->computeOutputDims(); + mySub->getOperator()->setDataType(DataType::Float32); + mySub->getOperator()->setBackend("cpu"); + op->computeOutputDims(); mySub->forward(); - float* resPtr = static_cast<float*>(mySub->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 4; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); @@ -112,14 +114,15 @@ TEST_CASE("[cpu/operator] Sub(forward)") { }); std::shared_ptr<Node> mySub = Sub(); - mySub->getOperator()->setDatatype(DataType::Float32); - mySub->getOperator()->setBackend("cpu"); + auto op = std::static_pointer_cast<OperatorTensor>(mySub -> getOperator()); mySub->getOperator()->associateInput(0, input_1); mySub->getOperator()->associateInput(1, input_2); - mySub->getOperator()->computeOutputDims(); + mySub->getOperator()->setDataType(DataType::Float32); + mySub->getOperator()->setBackend("cpu"); + op->computeOutputDims(); mySub->forward(); - float* resPtr = static_cast<float*>(mySub->getOperator()->getOutput(0)->getImpl()->rawPtr()); + float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); for (std::size_t i = 0; i< 12; ++i) { REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); diff --git a/unit_tests/scheduler/Test_Scheduler.cpp b/unit_tests/scheduler/Test_Scheduler.cpp index 78ab8d5b149e8f702558658fef0442f225de3813..8ea8e726f286035a1059a317471b893ce4639251 100644 --- a/unit_tests/scheduler/Test_Scheduler.cpp +++ b/unit_tests/scheduler/Test_Scheduler.cpp @@ -50,13 +50,11 @@ TEST_CASE("[cpu/scheduler] SequentialScheduler(forward)") { Conv(1, 3, {3, 3}, "conv1"), Conv(3, 4, {1, 1}, "conv2"), Conv(4, 3, {1, 1}, "conv3"), - FC(5, false, "fc")}); - g->setDatatype(Aidge::DataType::Int32); - g->setBackend("cpu"); + FC(27, 5, false, "fc")}); - g->getNode("conv1")->getOperator()->input(0) = *inputTensor; - g->getNode("conv1")->getOperator()->input(1) = *weight1; - g->getNode("conv1")->getOperator()->input(2) = *bias1; + g->getNode("conv1")->getOperator()->setInput(0, inputTensor); + g->getNode("conv1")->getOperator()->setInput(1, weight1); + g->getNode("conv1")->getOperator()->setInput(2, bias1); std::shared_ptr<Tensor> weight2 = std::make_shared<Tensor>(Array4D<int, 4, 3, 1, 1>{{{{{1}}, {{2}}, {{3}}}, @@ -64,8 +62,8 @@ TEST_CASE("[cpu/scheduler] SequentialScheduler(forward)") { {{{7}}, {{8}}, {{9}}}, {{{10}}, {{11}}, {{12}}}}}); std::shared_ptr<Tensor> bias2 = std::make_shared<Tensor>(Array1D<int, 4>{{1, 2, 3, 4}}); - g->getNode("conv2")->getOperator()->input(1) = *weight2; - g->getNode("conv2")->getOperator()->input(2) = *bias2; + g->getNode("conv2")->getOperator()->setInput(1, weight2); + g->getNode("conv2")->getOperator()->setInput(2, bias2); // *(g->getNode("conv2")->getOperator()->input(1, weight2); std::shared_ptr<Tensor> weight3 = std::make_shared<Tensor>( @@ -73,8 +71,8 @@ TEST_CASE("[cpu/scheduler] SequentialScheduler(forward)") { {{{5}}, {{6}}, {{7}}, {{8}}}, {{{9}}, {{10}}, {{11}}, {{12}}}}}); std::shared_ptr<Tensor> bias3 = std::make_shared<Tensor>(Array1D<int, 3>{{1, 2, 3}}); - g->getNode("conv3")->getOperator()->input(1) = *weight3; - g->getNode("conv3")->getOperator()->input(2) = *bias3; + g->getNode("conv3")->getOperator()->setInput(1, weight3); + g->getNode("conv3")->getOperator()->setInput(2, bias3); std::shared_ptr<Tensor> weightfc = std::make_shared<Tensor>( Array2D<int, 5, 27>{{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, @@ -88,10 +86,12 @@ TEST_CASE("[cpu/scheduler] SequentialScheduler(forward)") { {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}}); std::shared_ptr<Tensor> biasfc = std::make_shared<Tensor>(Array1D<int, 5>{{1, 2, 3, 4, 5}}); - g->getNode("fc")->getOperator()->input(1) = *weightfc; - g->getNode("fc")->getOperator()->input(2) = *biasfc; + g->getNode("fc")->getOperator()->setInput(1, weightfc); + g->getNode("fc")->getOperator()->setInput(2, biasfc); // input->addChild(g); + g->setDataType(Aidge::DataType::Int32); + g->setBackend("cpu"); g->forwardDims(); SequentialScheduler scheduler(g); REQUIRE_NOTHROW(scheduler.forward()); @@ -126,17 +126,17 @@ TEST_CASE("[cpu/scheduler] SequentialScheduler(forward)") { Tensor expectedOutput4 = Array2D<int, 2, 5>{ {{205050376, 198925904, 181355097, 196978090, 238868348}, {598467376, 561797804, 560823897, 593043790, 698672948}}}; - Tensor other1 = g->getNode("conv1")->getOperator()->output(0); - bool equal1 = (other1 == *expectedOutput1); + std::shared_ptr<Tensor> other1 = std::static_pointer_cast<OperatorTensor>(g->getNode("conv1")->getOperator())->getOutput(0); + bool equal1 = (*other1 == *expectedOutput1); REQUIRE(equal1); - Tensor other2 = g->getNode("conv2")->getOperator()->output(0); - bool equal2 = (other2 == *expectedOutput2); + std::shared_ptr<Tensor> other2 = std::static_pointer_cast<OperatorTensor>(g->getNode("conv2")->getOperator())->getOutput(0); + bool equal2 = (*other2 == *expectedOutput2); REQUIRE(equal2); - Tensor other3 = g->getNode("conv3")->getOperator()->output(0); - bool equal3 = (other3 == *expectedOutput3); + std::shared_ptr<Tensor> other3 = std::static_pointer_cast<OperatorTensor>(g->getNode("conv3")->getOperator())->getOutput(0); + bool equal3 = (*other3 == *expectedOutput3); REQUIRE(equal3); - Tensor other4 = g->getNode("fc")->getOperator()->output(0); - bool equal4 = (other4 == expectedOutput4); + std::shared_ptr<Tensor> other4 = std::static_pointer_cast<OperatorTensor>(g->getNode("fc")->getOperator())->getOutput(0); + bool equal4 = (*other4 == expectedOutput4); REQUIRE(equal4); } @@ -147,36 +147,34 @@ TEST_CASE("[cpu/scheduler] SequentialScheduler(forward)") { Conv(3, 3, {1, 1}, "conv1.1"), Conv(3, 3, {1, 1}, "conv1.2"), Conv(3, 3, {1, 1}, "conv1.3")}), - Add<3>("add1"), + Add(3, "add1"), Conv(3, 2, {1, 1}, "conv2"), - FC(5, false, "out")}); - g->setBackend("cpu"); - g->setDatatype(Aidge::DataType::Int32); + FC(18, 5, false, "out")}); - g->getNode("inputConv")->getOperator()->input(0) = *inputTensor; - g->getNode("inputConv")->getOperator()->input(1) = *weight1; - g->getNode("inputConv")->getOperator()->input(2) = *bias1; + g->getNode("inputConv")->getOperator()->setInput(0, inputTensor); + g->getNode("inputConv")->getOperator()->setInput(1, weight1); + g->getNode("inputConv")->getOperator()->setInput(2, bias1); std::shared_ptr<Tensor> conv11Weight = std::make_shared<Tensor>(Array4D<int, 3, 3, 1, 1>{ {{{{1}}, {{2}}, {{3}}}, {{{4}}, {{5}}, {{6}}}, {{{7}}, {{8}}, {{9}}}}}); - g->getNode("conv1.1")->getOperator()->input(1) = *conv11Weight; - g->getNode("conv1.1")->getOperator()->input(2) = *bias1; + g->getNode("conv1.1")->getOperator()->setInput(1, conv11Weight); + g->getNode("conv1.1")->getOperator()->setInput(2, bias1); std::shared_ptr<Tensor> conv12Weight = std::make_shared<Tensor>(Array4D<int, 3, 3, 1, 1>{ {{{{11}}, {{12}}, {{13}}}, {{{14}}, {{15}}, {{16}}}, {{{17}}, {{18}}, {{19}}}}}); - g->getNode("conv1.2")->getOperator()->input(1) = *conv12Weight; - g->getNode("conv1.2")->getOperator()->input(2) = *bias1; + g->getNode("conv1.2")->getOperator()->setInput(1, conv12Weight); + g->getNode("conv1.2")->getOperator()->setInput(2, bias1); std::shared_ptr<Tensor> conv13Weight = std::make_shared<Tensor>(Array4D<int, 3, 3, 1, 1>{ {{{{21}}, {{22}}, {{23}}}, {{{24}}, {{25}}, {{26}}}, {{{27}}, {{28}}, {{29}}}}}); - g->getNode("conv1.3")->getOperator()->input(1) = *conv13Weight; - g->getNode("conv1.3")->getOperator()->input(2) = *bias1; + g->getNode("conv1.3")->getOperator()->setInput(1, conv13Weight); + g->getNode("conv1.3")->getOperator()->setInput(2, bias1); std::shared_ptr<Tensor> conv2Weight = std::make_shared<Tensor>( Array4D<int, 2, 3, 1, 1>{{{{{1}}, {{2}}, {{3}}}, {{{4}}, {{5}}, {{6}}}}}); std::shared_ptr<Tensor> bias2 = std::make_shared<Tensor>(Array1D<int, 2>{{1, 2}}); - g->getNode("conv2")->getOperator()->input(1) = *conv2Weight; - g->getNode("conv2")->getOperator()->input(2) = *bias2; + g->getNode("conv2")->getOperator()->setInput(1, conv2Weight); + g->getNode("conv2")->getOperator()->setInput(2, bias2); std::shared_ptr<Tensor> fcWeight = std::make_shared<Tensor>( Array2D<int, 5, 18>{{{1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3}, @@ -185,19 +183,21 @@ TEST_CASE("[cpu/scheduler] SequentialScheduler(forward)") { {5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2}, {3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5}}}); std::shared_ptr<Tensor> fcBias = std::make_shared<Tensor>(Array1D<int, 5>{{1, 2, 3, 4, 5}}); - g->getNode("out")->getOperator()->input(1) = *fcWeight; - g->getNode("out")->getOperator()->input(2) = *fcBias; + g->getNode("out")->getOperator()->setInput(1, fcWeight); + g->getNode("out")->getOperator()->setInput(2, fcBias); std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>( Array2D<int, 2, 5>{{{124324368, 130692907, 133325056, 125044620, 142843879}, {369195468, 394615207, 382643056, 379441320, 416291779}}}); + g->setBackend("cpu"); + g->setDataType(Aidge::DataType::Int32); g->forwardDims(); SequentialScheduler scheduler(g); REQUIRE_NOTHROW(scheduler.forward()); scheduler.saveSchedulingDiagram("schedulingSequential"); std::shared_ptr<Tensor> result = - std::static_pointer_cast<Tensor>(g->getNode("out")->getOperator()->getOutput(0)); + std::static_pointer_cast<Tensor>(g->getNode("out")->getOperator()->getRawOutput(0)); bool equal = (*result == *expectedOutput); REQUIRE(equal); }