diff --git a/include/aidge/backend/cpu.hpp b/include/aidge/backend/cpu.hpp index 95b2f7b8e2ff70c9b9224bea1137ad74e469ffb8..764a8e4b0f9b31882be60659298d57687a771341 100644 --- a/include/aidge/backend/cpu.hpp +++ b/include/aidge/backend/cpu.hpp @@ -20,6 +20,7 @@ #include "aidge/backend/cpu/operator/ConvImpl.hpp" #include "aidge/backend/cpu/operator/FCImpl.hpp" #include "aidge/backend/cpu/operator/LeakyReLUImpl.hpp" +#include "aidge/backend/cpu/operator/MatMulImpl.hpp" #include "aidge/backend/cpu/operator/ProducerImpl.hpp" #include "aidge/backend/cpu/operator/ReLUImpl.hpp" #include "aidge/backend/cpu/operator/SoftmaxImpl.hpp" diff --git a/include/aidge/backend/cpu/operator/MatMulImpl.hpp b/include/aidge/backend/cpu/operator/MatMulImpl.hpp new file mode 100644 index 0000000000000000000000000000000000000000..437d0228706f6d8f0972dab6f6aef1830f938883 --- /dev/null +++ b/include/aidge/backend/cpu/operator/MatMulImpl.hpp @@ -0,0 +1,76 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CPU_OPERATOR_MATMULIMPL_H_ +#define AIDGE_CPU_OPERATOR_MATMULIMPL_H_ + +#include <array> +#include <memory> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/operator/MatMul.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { +// class MatMul_Op; + +// compute kernel registry for forward and backward +class MatMulImplForward_cpu + : public Registrable<MatMulImplForward_cpu, std::tuple<DataType, DataType, DataType>, + void(const MatMul_Op::Parameters &, const DimSize_t, const DimSize_t, + const void *, const void *, void *)> {}; +class MatMulImplBackward_cpu + : public Registrable<MatMulImplBackward_cpu, std::tuple<DataType, DataType, DataType>, + void(const MatMul_Op::Parameters &, const DimSize_t, const DimSize_t, + const void *, const void *, void *)> {}; + +class MatMulImpl_cpu : public OperatorImpl { +private: + const MatMul_Op &mOp; + std::array<NbElts_t, 2> mNbConsumedData; + std::array<NbElts_t, 1> mNbProducedData; + +public: + MatMulImpl_cpu(const MatMul_Op &op) + : mOp(op), + mNbConsumedData({0, 0}), + mNbProducedData({0}) + { + // ctor + } + + static std::unique_ptr<MatMulImpl_cpu> create(const MatMul_Op &op) + { + return std::make_unique<MatMulImpl_cpu>(op); + } + +public: + NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final; + NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final; + NbElts_t getRequiredMemory(const IOIndex_t /*outputIdx*/, + const std::vector<DimSize_t> & /*inputsSize*/) const override final; + NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final; + NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final; + + void updateConsummerProducer() override final; + + void forward(); + void backward(); +}; + +namespace { +static Registrar<MatMul_Op> registrarMatMulImpl_cpu("cpu", Aidge::MatMulImpl_cpu::create); +} +} // namespace Aidge + +#endif /* AIDGE_CPU_OPERATOR_MATMULIMPL_H_ */ diff --git a/include/aidge/backend/cpu/operator/MatMulImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/MatMulImpl_forward_kernels.hpp new file mode 100644 index 0000000000000000000000000000000000000000..2ef7e4337d2d8eb8380bfbec02ad525f211b0715 --- /dev/null +++ b/include/aidge/backend/cpu/operator/MatMulImpl_forward_kernels.hpp @@ -0,0 +1,58 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CPU_OPERATOR_MATMULIMPL_FORWARD_KERNEL_H_ +#define AIDGE_CPU_OPERATOR_MATMULIMPL_FORWARD_KERNEL_H_ + +#include "aidge/utils/Registrar.hpp" +#include <algorithm> + +#include "aidge/backend/cpu/operator/MatMulImpl.hpp" + +namespace Aidge { + +template <class I, class W, class O> +void MatMulImpl_cpu_forward_kernel(const MatMul_Op::Parameters& params, const DimSize_t batchSize, const DimSize_t oneInputSize, + const void* input_, const void* weights_, void* output_) { + // FIXME: missing MatMul parameters as arguments + const I* input = static_cast<const I*>(input_); + const W* weights = static_cast<const W*>(weights_); + O* output = static_cast<O*>(output_); + + + std::fill(output, output+(batchSize*std::get<0>(params)), O(0)); + + for (std::size_t batch = 0; batch < batchSize; ++batch) { + for (std::size_t out = 0; out < std::get<0>(params); ++out) { + output[out + batch*std::get<0>(params)] = std::inner_product(input + batch*oneInputSize, + input + (batch + 1)*oneInputSize, + weights + out*oneInputSize, + output[out + batch*std::get<0>(params)]); + } + } +} + + +namespace { +static Registrar<MatMulImplForward_cpu> registrarMatMulImpl2DForward_cpu_Float32( + {DataType::Float32, DataType::Float32, DataType::Float32}, + Aidge::MatMulImpl_cpu_forward_kernel<float, float, float>); +static Registrar<MatMulImplForward_cpu> registrarMatMulImpl2DForward_cpu_Int32( + {DataType::Int32, DataType::Int32, DataType::Int32}, + Aidge::MatMulImpl_cpu_forward_kernel<int, int, int>); +static Registrar<MatMulImplForward_cpu> registrarMatMulImpl2DForward_cpu_Float64( + {DataType::Float64, DataType::Float64, DataType::Float64}, + Aidge::MatMulImpl_cpu_forward_kernel<double, double, double>); +} // namespace + +} // namespace Aidge + +#endif /* AIDGE_CPU_OPERATOR_MATMULIMPL_FORWARD_KERNEL_H_ */ diff --git a/src/operator/MatMulImpl.cpp b/src/operator/MatMulImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..47f11dca7605ddee71e47dc6b2ae87cff6efba4b --- /dev/null +++ b/src/operator/MatMulImpl.cpp @@ -0,0 +1,121 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <cassert> +#include <chrono> // std::chrono::milliseconds +#include <numeric> // std::accumulate +#include <thread> // std::this_thread::sleep_for +#include <vector> + +#include "aidge/operator/MatMul.hpp" +#include "aidge/utils/Types.h" + +#include "aidge/backend/cpu/operator/MatMulImpl.hpp" +#include "aidge/backend/cpu/operator/MatMulImpl_forward_kernels.hpp" + +Aidge::NbElts_t Aidge::MatMulImpl_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const +{ + assert(mOp.getInput(inputIdx) && "requires valid input"); + + // Requires the whole tensors + const auto &inputDims + = std::static_pointer_cast<Tensor>(mOp.getInput(inputIdx))->dims(); + + return std::accumulate( + inputDims.begin(), + inputDims.end(), + Aidge::NbElts_t(1), + std::multiplies<Aidge::NbElts_t>()); +} + +Aidge::NbElts_t + Aidge::MatMulImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const +{ + // for the direct convolution algorithm, convolutions can be in-place, if + // there is no padding! + return 0; +} + +Aidge::NbElts_t Aidge::MatMulImpl_cpu::getRequiredMemory( + const IOIndex_t outputIdx, const std::vector<DimSize_t> &/*inputsSize*/) const +{ + // Requires the whole tensors, regardless of available data on inputs + assert(outputIdx == 0 && "operator has only one output"); + (void) outputIdx; + + const auto &outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims(); + return std::accumulate( + outputDims.begin(), + outputDims.end(), + static_cast<NbElts_t>(1), + std::multiplies<NbElts_t>()); +} + +Aidge::NbElts_t Aidge::MatMulImpl_cpu::getNbConsumedData(Aidge::IOIndex_t inputIdx) const +{ + assert((inputIdx != gk_IODefaultIndex) && (inputIdx < mNbConsumedData.size())); + return mNbConsumedData[static_cast<std::size_t>(inputIdx)]; +} + +Aidge::NbElts_t Aidge::MatMulImpl_cpu::getNbProducedData(Aidge::IOIndex_t outputIdx) const +{ + assert(static_cast<std::size_t>(outputIdx) < mNbProducedData.size()); + return mNbProducedData[static_cast<std::size_t>(outputIdx)]; +} + +void Aidge::MatMulImpl_cpu::updateConsummerProducer(){ + // Update producer-consumer data + for (IOIndex_t inputIdx = 0; static_cast<std::size_t>(inputIdx) < mNbConsumedData.size(); ++inputIdx) + mNbConsumedData[inputIdx] + += getNbRequiredData(static_cast<std::size_t>(inputIdx)); // each input is consumed by the minimum + // amount for a forward pass + + mNbProducedData[0] += getRequiredMemory(0, {}); +} + +void Aidge::MatMulImpl_cpu::forward() +{ + // FIXME: uncomment the following code once memory handling will work + assert(mOp.getInput(0) && "missing input #0"); + assert(mOp.mInputs[1] && "missing input #1"); + + // Find the correct kernel type + auto kernelFunc = Registrar<MatMulImplForward_cpu>::create( + {mOp.getInput(0)->dataType(), + mOp.mInputs[1]->dataType(), + mOp.getOutput(0)->dataType()}); + + // Call kernel + // if (mOp.getInput(0)->nbDims() == 4) { + // kernelFunc( + // mOp.getParams(), + // std::static_pointer_cast<Tensor>(mOp.getInput(0))->dims<4>(), + // mOp.getInput(0)->getImpl()->rawPtr(), + // mOp.mInputs[1]->getImpl()->rawPtr(), + // mOp.mInputs[2]->getImpl()->rawPtr(), + // mOp.getOutput(0)->getImpl()->rawPtr()); + // } + // else + kernelFunc( + mOp.getParams(), + mOp.getInput(0)->dims()[0], + mOp.getInput(0)->sizeM1(), + mOp.getInput(0)->getImpl()->rawPtr(), + mOp.mInputs[1]->getImpl()->rawPtr(), + mOp.getOutput(0)->getImpl()->rawPtr()); + + +} + +void Aidge::MatMulImpl_cpu::backward() +{ + printf("Not implemented yet.\n"); +} diff --git a/unit_tests/operator/Test_MatMulImpl.cpp b/unit_tests/operator/Test_MatMulImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..0da01b3287043e07e5b967df8882960cfb814f8f --- /dev/null +++ b/unit_tests/operator/Test_MatMulImpl.cpp @@ -0,0 +1,108 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <memory> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/MatMul.hpp" + +#include "aidge/backend/cpu/operator/MatMulImpl.hpp" + +using namespace Aidge; + +TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul]") { + // Test MatMul forward with batch size = 2 and feature size = 75 + std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array2D<int, 5, 75>{ + {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, + {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, + {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, + {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, + {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}}); + std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array2D<int, 2, 5>{ + {{23600, 23600, 23600, 23600, 23600}, {68600, 68600, 68600, 68600, 68600}}}); + + std::shared_ptr<Node> myMatMul = MatMul(5, "mymatmul"); + myMatMul->getOperator()->setDatatype(DataType::Int32); + myMatMul->getOperator()->setBackend("cpu"); + myMatMul->getOperator()->associateInput(1, myWeights); + + SECTION("2D input") { + std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array2D<int, 2, 75>{ + {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, + 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, + 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74}, + {75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, + 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, + 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149}}}); + myMatMul->getOperator()->associateInput(0, myInput); + myMatMul->getOperator()->computeOutputDims(); + myMatMul->forward(); + REQUIRE(*std::static_pointer_cast<Tensor>(myMatMul->getOperator()->getOutput(0)) == *myOutput); + } + SECTION("4D input") { + std::shared_ptr<Tensor> myInput = + std::make_shared<Tensor>(Array4D<int, 2, 3, 5, 5>{{{{{0, 1, 2, 3, 4}, + {5, 6, 7, 8, 9}, + {10, 11, 12, 13, 14}, + {15, 16, 17, 18, 19}, + {20, 21, 22, 23, 24}}, + {{25, 26, 27, 28, 29}, + {30, 31, 32, 33, 34}, + {35, 36, 37, 38, 39}, + {40, 41, 42, 43, 44}, + {45, 46, 47, 48, 49}}, + {{50, 51, 52, 53, 54}, + {55, 56, 57, 58, 59}, + {60, 61, 62, 63, 64}, + {65, 66, 67, 68, 69}, + {70, 71, 72, 73, 74}}}, + {{{75, 76, 77, 78, 79}, + {80, 81, 82, 83, 84}, + {85, 86, 87, 88, 89}, + {90, 91, 92, 93, 94}, + {95, 96, 97, 98, 99}}, + {{100, 101, 102, 103, 104}, + {105, 106, 107, 108, 109}, + {110, 111, 112, 113, 114}, + {115, 116, 117, 118, 119}, + {120, 121, 122, 123, 124}}, + {{125, 126, 127, 128, 129}, + {130, 131, 132, 133, 134}, + {135, 136, 137, 138, 139}, + {140, 141, 142, 143, 144}, + {145, 146, 147, 148, 149}}}}}); + myMatMul->getOperator()->associateInput(0, myInput); + myMatMul->getOperator()->computeOutputDims(); + myMatMul->forward(); + REQUIRE(*std::static_pointer_cast<Tensor>(myMatMul->getOperator()->getOutput(0)) == *myOutput); + } + + // std::cout << static_cast<Tensor>((*myMatMul->getOperator())["weight"])[0][0][0][0] << std::endl; +} \ No newline at end of file