From 9349f51e37856294ba54612a3e6d802762980a09 Mon Sep 17 00:00:00 2001 From: NAUD Maxence <maxence.naud@cea.fr> Date: Thu, 31 Oct 2024 23:01:43 +0000 Subject: [PATCH] [Upd] Conv[DW] 2D kernels --- .../operator/ConvDepthWiseImpl_kernels.hpp | 92 ++++++++++----- .../backend/cpu/operator/ConvImpl_kernels.hpp | 105 ++++++++++++------ 2 files changed, 138 insertions(+), 59 deletions(-) diff --git a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_kernels.hpp b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_kernels.hpp index c39cf9cc..2ab00a9d 100644 --- a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_kernels.hpp @@ -150,30 +150,24 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri // weight (outCh, ch, kernelX, kernelY) // does not take Dilation attribute into account using signedsize = std::make_signed<std::size_t>::type; - for (std::size_t batch = 0; batch < inputDims[0]; ++batch) { - for (std::size_t ch = 0; ch < inputDims[1]; ++ch) { - const std::size_t oIndex = (ch + batch*inputDims[1]) * oxSize * oySize; - B biasVal = (biases != nullptr) ? biases[ch] : B(0); - std::fill(output + oIndex, output+(oIndex+oxSize*oySize), biasVal); - const std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2] * inputDims[3]; - const std::size_t wIndex = ch * kernelDims[0] * kernelDims[1]; - for (std::size_t ox = 0; ox < oxSize; ++ox) { - // const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]); - // const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0))); - // const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx); - const std::size_t sxMin = 0; - const std::size_t sxMax = dilated_kernel_x; - for (std::size_t oy = 0; oy < oySize; ++oy) { - // const signedsize dify = static_cast<signedsize>(- oy * strideDims[1]); - // const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0))); - // const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > kernelDims[1] ? kernelDims[1] : inputDims[3] + dify); - const std::size_t syMin = 0; - const std::size_t syMax = dilated_kernel_y; - const std::size_t oIndexFull = oIndex + ox*oySize + oy; - const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); - const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); - - if (sxMin == 0 && syMin == 0 && sxMax == 3 && syMax == 3) { + const std::size_t outChannels_s = oxSize * oySize; + + if (dilated_kernel_x ==3 && dilated_kernel_y == 3) { + for (std::size_t batch = 0; batch < inputDims[0]; ++batch) { + for (std::size_t ch = 0; ch < inputDims[1]; ++ch) { + + B biasVal = (biases != nullptr) ? biases[ch] : B(0); + std::fill(output, output + outChannels_s, biasVal); + + const std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2] * inputDims[3]; + const std::size_t wIndex = ch * 9; + + for (std::size_t ox = 0; ox < oxSize; ++ox) { + for (std::size_t oy = 0; oy < oySize; ++oy) { + const std::size_t oIndexFull = ox*oySize + oy; + const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); + const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); + output[oIndexFull] += (weights[wIndex + 0*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] + weights[wIndex + 0*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] + weights[wIndex + 0*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] + @@ -183,9 +177,51 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri weights[wIndex + 2*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] + weights[wIndex + 2*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] + weights[wIndex + 2*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]); - } else { - for (std::size_t sx = sxMin; sx*dilationDims[0] < sxMax; ++sx) { - for (std::size_t sy = syMin; sy*dilationDims[1] < syMax; ++sy) { + } + } + output += outChannels_s; + } + } + } else if (dilated_kernel_x == 1 && dilated_kernel_y == 1) { + for (std::size_t batch = 0; batch < inputDims[0]; ++batch) { + for (std::size_t ch = 0; ch < inputDims[1]; ++ch) { + + B biasVal = (biases != nullptr) ? biases[ch] : B(0); + std::fill(output, output + outChannels_s, biasVal); + + const std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2] * inputDims[3]; + const std::size_t wIndex = ch; + for (std::size_t ox = 0; ox < oxSize; ++ox) { + for (std::size_t oy = 0; oy < oySize; ++oy) { + + const std::size_t oIndexFull = ox*oySize + oy; + const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); + const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); + output[oIndexFull] += weights[wIndex] * input[iIndex + static_cast<std::size_t>(ix)*inputDims[3] + static_cast<std::size_t>(iy)]; + } + } + } + output += outChannels_s; + } + } else { + for (std::size_t batch = 0; batch < inputDims[0]; ++batch) { + for (std::size_t ch = 0; ch < inputDims[1]; ++ch) { + + B biasVal = (biases != nullptr) ? biases[ch] : B(0); + std::fill(output, output+outChannels_s, biasVal); + + const std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2] * inputDims[3]; + const std::size_t wIndex = ch * kernelDims[0] * kernelDims[1]; + + for (std::size_t ox = 0; ox < oxSize; ++ox) { + for (std::size_t oy = 0; oy < oySize; ++oy) { + + const std::size_t oIndexFull = ox*oySize + oy; + const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); + const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); + + for (std::size_t sx = 0; sx*dilationDims[0] < dilated_kernel_x; ++sx) { + for (std::size_t sy = 0; sy*dilationDims[1] < dilated_kernel_y; ++sy) { output[oIndexFull] += weights[wIndex + sx*kernelDims[1] + sy] * input[iIndex + static_cast<std::size_t>(ix+static_cast<signedsize>(sx*dilationDims[0]))*inputDims[3] + static_cast<std::size_t>(iy+static_cast<signedsize>(sy*dilationDims[1]))]; } @@ -193,10 +229,12 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri } } } + output += outChannels_s; } } } + // Kernels registration to implementation entry point REGISTRAR(ConvDepthWiseImpl2D_cpu, {{DataType::Any, DataFormat::NCHW}, {DataType::Float32, DataFormat::NCHW}}, diff --git a/include/aidge/backend/cpu/operator/ConvImpl_kernels.hpp b/include/aidge/backend/cpu/operator/ConvImpl_kernels.hpp index 71538eaa..0cf079a9 100644 --- a/include/aidge/backend/cpu/operator/ConvImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ConvImpl_kernels.hpp @@ -141,15 +141,15 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims, O *output = static_cast<O *>(output_); // output H size + const DimSize_t dilated_kernel_x = dilationDims[0]*(kernelDims[0] - 1) + 1; const std::size_t oxSize = - static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - dilationDims[0]*(kernelDims[0] - 1) - 1 + strideDims[0]) / + static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - dilated_kernel_x + strideDims[0]) / static_cast<float>(strideDims[0]))); - const DimSize_t dilated_kernel_x = dilationDims[0]*(kernelDims[0] - 1) + 1; // output W size + const DimSize_t dilated_kernel_y = dilationDims[1]*(kernelDims[1] - 1) + 1; const std::size_t oySize = - static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[3] - dilationDims[1]*(kernelDims[1] - 1) - 1 + strideDims[1]) / + static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[3] - dilated_kernel_y + strideDims[1]) / static_cast<float>(strideDims[1]))); - const DimSize_t dilated_kernel_y = dilationDims[1]*(kernelDims[1] - 1) + 1; // TODO: kernel computation @@ -158,51 +158,92 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims, // weight (outCh, inCh, kernelX, kernelY) // does not take Dilation attribute into account const std::size_t outChannels_s = oxSize * oySize; + using signedsize = std::make_signed<std::size_t>::type; - for (std::size_t batch = 0; batch < inputDims[0]; ++batch) { - for (std::size_t outCh = 0; outCh < outChannels; ++outCh) { - // If bias = nullptr, set B(0) - B biasVal = (biases != nullptr) ? biases[outCh] : B(0); - std::fill(output, output+outChannels_s, biasVal); + if (dilated_kernel_x == 3 && dilated_kernel_y == 3) { + for (std::size_t batch = 0; batch < inputDims[0]; ++batch) { + for (std::size_t outCh = 0; outCh < outChannels; ++outCh) { + // If bias = nullptr, set B(0) + B biasVal = (biases != nullptr) ? biases[outCh] : B(0); + std::fill(output, output+outChannels_s, biasVal); + for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) { + const std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3]; + const std::size_t wIndex = (inCh + outCh*inputDims[1]) * 9; + for (std::size_t ox = 0; ox < oxSize; ++ox) { + for (std::size_t oy = 0; oy < oySize; ++oy) { + const std::size_t oIndexFull = ox*oySize + oy; + const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); + const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); - for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) { - const std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3]; - const std::size_t wIndex = (inCh + outCh*inputDims[1]) * kernelDims[0] * kernelDims[1]; - for (std::size_t ox = 0; ox < oxSize; ++ox) { + output[oIndexFull] += (weights[wIndex + 0*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] + + weights[wIndex + 0*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] + + weights[wIndex + 0*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] + + weights[wIndex + 1*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] + + weights[wIndex + 1*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] + + weights[wIndex + 1*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] + + weights[wIndex + 2*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] + + weights[wIndex + 2*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] + + weights[wIndex + 2*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]); + } + } + } + output += outChannels_s; + } + } + } else if (dilated_kernel_x == 1 && dilated_kernel_y == 1) { + for (std::size_t batch = 0; batch < inputDims[0]; ++batch) { + for (std::size_t outCh = 0; outCh < outChannels; ++outCh) { + // If bias = nullptr, set B(0) + B biasVal = (biases != nullptr) ? biases[outCh] : B(0); + std::fill(output, output+outChannels_s, biasVal); + for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) { + const std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3]; + const std::size_t wIndex = (inCh + outCh*inputDims[1]); + for (std::size_t ox = 0; ox < oxSize; ++ox) { + for (std::size_t oy = 0; oy < oySize; ++oy) { + const std::size_t oIndexFull = ox*oySize + oy; + const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); + const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); + + output[oIndexFull] += weights[wIndex] * input[iIndex + static_cast<std::size_t>(ix)*inputDims[3] + static_cast<std::size_t>(iy)]; + } + } + } + output += outChannels_s; + } + } + } else { + for (std::size_t batch = 0; batch < inputDims[0]; ++batch) { + for (std::size_t outCh = 0; outCh < outChannels; ++outCh) { + // If bias = nullptr, set B(0) + B biasVal = (biases != nullptr) ? biases[outCh] : B(0); + std::fill(output, output+outChannels_s, biasVal); + for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) { + const std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3]; + const std::size_t wIndex = (inCh + outCh*inputDims[1]) * kernelDims[0] * kernelDims[1]; + for (std::size_t ox = 0; ox < oxSize; ++ox) { + for (std::size_t oy = 0; oy < oySize; ++oy) { + const std::size_t oIndexFull = ox*oySize + oy; + const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); + const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); - for (std::size_t oy = 0; oy < oySize; ++oy) { - - const std::size_t oIndexFull = ox*oySize + oy; - const size_t ix = ox * strideDims[0]; - const size_t iy = oy * strideDims[1]; - - if (kernelDims[0] == 3 && kernelDims[1] == 3 && dilationDims[0] == 1 && dilationDims[1] == 1) { - output[oIndexFull] += (weights[wIndex] * input[iIndex + static_cast<std::size_t>(ix)*inputDims[3] + static_cast<std::size_t>(iy)] + - weights[wIndex + 1] * input[iIndex + static_cast<std::size_t>(ix)*inputDims[3] + static_cast<std::size_t>(iy+1)] + - weights[wIndex + 2] * input[iIndex + static_cast<std::size_t>(ix)*inputDims[3] + static_cast<std::size_t>(iy+2)] + - weights[wIndex + kernelDims[1]] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy)] + - weights[wIndex + kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] + - weights[wIndex + kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] + - weights[wIndex + 2*kernelDims[1]] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy)] + - weights[wIndex + 2*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] + - weights[wIndex + 2*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]); - } else { for (std::size_t sx = 0; sx*dilationDims[0] < dilated_kernel_x; ++sx) { for (std::size_t sy = 0; sy*dilationDims[1] < dilated_kernel_y; ++sy) { output[oIndexFull] += weights[wIndex + sx*kernelDims[1] + sy] * - input[iIndex + (ix + (sx*dilationDims[0]))*inputDims[3] + (iy + (sy*dilationDims[1]))]; + input[iIndex + static_cast<std::size_t>(ix+static_cast<signedsize>(sx*dilationDims[0]))*inputDims[3] + static_cast<std::size_t>(iy+static_cast<signedsize>(sy*dilationDims[1]))]; } } } } } + output += outChannels_s; } - output += outChannels_s; } } } + // Kernels registration to implementation entry point REGISTRAR(ConvImpl2D_cpu, {{DataType::Any, DataFormat::NCHW}, {DataType::Float32, DataFormat::NCHW}}, -- GitLab