diff --git a/aidge_backend_cpu/unit_tests/test_recipes.py b/aidge_backend_cpu/unit_tests/test_recipes.py index 12d8774369af5a46cfbd30d44fc90f4f97ca9821..7c11b92b93eaf04eb83518992c46bf4dec40dfca 100644 --- a/aidge_backend_cpu/unit_tests/test_recipes.py +++ b/aidge_backend_cpu/unit_tests/test_recipes.py @@ -36,7 +36,7 @@ class test_recipes(unittest.TestCase): graph_view = aidge_core.sequential([input_node, conv, bn]) # Add random values to conv and BatchNorm parameters - graph_view.set_datatype(aidge_core.DataType.Float32) + graph_view.set_datatype(aidge_core.dtype.float32) graph_view.set_backend("cpu") np_weights = np.arange(9).reshape([1, 1, 3, 3]).astype(np.float32) diff --git a/aidge_backend_cpu/unit_tests/test_scheduler.py b/aidge_backend_cpu/unit_tests/test_scheduler.py index 0c41d59963c7633151745f2efe1f1fac3ee07815..0aeeb04b74a078f77c57500b959d6ef9fa9af4d0 100644 --- a/aidge_backend_cpu/unit_tests/test_scheduler.py +++ b/aidge_backend_cpu/unit_tests/test_scheduler.py @@ -24,7 +24,7 @@ class test_scheduler(unittest.TestCase): input_node.add_child(relu) - gv.set_datatype(aidge_core.DataType.Int32) + gv.set_datatype(aidge_core.dtype.int32) gv.set_backend("cpu") scheduler = aidge_core.SequentialScheduler(gv) @@ -48,7 +48,7 @@ class test_scheduler(unittest.TestCase): ]) EXPECTED_SCHEDULE = ['0', '1', '2'] - graph_view.set_datatype(aidge_core.DataType.Float32) + graph_view.set_datatype(aidge_core.dtype.float32) graph_view.set_backend("cpu") graph_view.forward_dims() @@ -74,7 +74,7 @@ class test_scheduler(unittest.TestCase): EXPECTED_SCHEDULE = [['0', '1', '3', '2'], ['0', '3', '1', '2']] # Both scheduling are valid ! - graph_view.set_datatype(aidge_core.DataType.Float32) + graph_view.set_datatype(aidge_core.dtype.float32) graph_view.set_backend("cpu") graph_view.forward_dims() diff --git a/include/aidge/backend/cpu/operator/AvgPoolingImpl.hpp b/include/aidge/backend/cpu/operator/AvgPoolingImpl.hpp index ce126dc2b870d6ac767c15bc6fbca2deb07e8772..12a5dc334619c16e6ad3a77f0cd76f4db7a87b77 100644 --- a/include/aidge/backend/cpu/operator/AvgPoolingImpl.hpp +++ b/include/aidge/backend/cpu/operator/AvgPoolingImpl.hpp @@ -29,12 +29,20 @@ namespace Aidge { // compute kernel registry for forward and backward class AvgPoolingImpl2DForward_cpu : public Registrable<AvgPoolingImpl2DForward_cpu, - std::tuple<DataType, DataType>, - void(const AvgPooling_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, void *)> {}; + std::tuple<DataType, DataType>, + void(const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 4>&, + const void *, + void *)> {}; class AvgPoolingImpl2DBackward_cpu : public Registrable<AvgPoolingImpl2DBackward_cpu, - std::tuple<DataType, DataType>, - void(const AvgPooling_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, void *)> {}; + std::tuple<DataType, DataType>, + void(const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 4>&, + const void *, + void *)> {}; class AvgPoolingImpl2D_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/AvgPoolingImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/AvgPoolingImpl_forward_kernels.hpp index d6950e11e935a3f6d5548148d1c393a5340af224..c7d9f86235c3bf1d7d01cf429cab29d156592fb5 100644 --- a/include/aidge/backend/cpu/operator/AvgPoolingImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/AvgPoolingImpl_forward_kernels.hpp @@ -12,16 +12,16 @@ #ifndef AIDGE_CPU_OPERATOR_AVGPOOLINGIMPL_FORWARD_KERNEL_H_ #define AIDGE_CPU_OPERATOR_AVGPOOLINGIMPL_FORWARD_KERNEL_H_ -#include "aidge/utils/Registrar.hpp" - -#include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp" -#include "aidge/utils/Types.h" -#include "aidge/backend/cpu/data/GetCPUPtr.h" -#include "aidge/data/Data.hpp" #include <array> #include <tuple> #include <cmath> +#include "aidge/backend/cpu/data/GetCPUPtr.h" +#include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp" +#include "aidge/data/Data.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + namespace Aidge { /** * @brief Forward kernel for 2D AvgPoolingolution on CPU backend. @@ -33,10 +33,11 @@ namespace Aidge { * @param output_ Output Tensor. */ template <class I, class O> -void AvgPoolingImpl2D_cpu_forward_kernel(const AvgPooling_Op<2>::Attrs &attrs, - const std::array<DimSize_t, 4> &dims, - const void *input_, - void *output_) { +void AvgPoolingImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims, + const std::array<DimSize_t, 2>& kernelDims, + const std::array<DimSize_t, 4> &dims, + const void *input_, + void *output_) { // FIXME: missing convolution attributes as arguments const I *input = static_cast<const I *>(input_); O *output = static_cast<O *>(output_); @@ -44,12 +45,12 @@ void AvgPoolingImpl2D_cpu_forward_kernel(const AvgPooling_Op<2>::Attrs &attrs, // output H size const std::size_t oxSize = - static_cast<std::size_t>(std::floor(static_cast<float>(dims[2] - std::get<1>(attrs)[0] + std::get<0>(attrs)[0]) / - static_cast<float>(std::get<0>(attrs)[0]))); + static_cast<std::size_t>(std::floor(static_cast<float>(dims[2] - kernelDims[0] + strideDims[0]) / + static_cast<float>(strideDims[0]))); // output W size const std::size_t oySize = - static_cast<std::size_t>(std::floor(static_cast<float>(dims[3] - std::get<1>(attrs)[1] + std::get<0>(attrs)[1]) / - static_cast<float>(std::get<0>(attrs)[1]))); + static_cast<std::size_t>(std::floor(static_cast<float>(dims[3] - kernelDims[1] + strideDims[1]) / + static_cast<float>(strideDims[1]))); // TODO: kernel computation // output (batch, outCh, Xout, Yout) @@ -63,16 +64,16 @@ void AvgPoolingImpl2D_cpu_forward_kernel(const AvgPooling_Op<2>::Attrs &attrs, const std::size_t iIndex = (ch + batch*dims[1]) * dims[2] * dims[3]; std::fill(output + oIndex, output+(oIndex+oxSize*oySize), 0); for (std::size_t ox = 0; ox < oxSize; ++ox) { - const signedsize difx = static_cast<signedsize>(- ox * std::get<0>(attrs)[0]); + const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]); const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0))); - const std::size_t sxMax = (static_cast<signedsize>(dims[2]) + difx) < 0 ? 0 : ((dims[2] + difx) > std::get<1>(attrs)[0] ? std::get<1>(attrs)[0] : dims[2] + difx); + const std::size_t sxMax = (static_cast<signedsize>(dims[2]) + difx) < 0 ? 0 : ((dims[2] + difx) > kernelDims[0] ? kernelDims[0] : dims[2] + difx); for (std::size_t oy = 0; oy < oySize; ++oy) { - const signedsize dify = static_cast<signedsize>(- oy * std::get<0>(attrs)[1]); + const signedsize dify = static_cast<signedsize>(- oy * strideDims[1]); const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0))); - const std::size_t syMax = (static_cast<signedsize>(dims[3]) + dify) < 0 ? 0 : ((dims[3] + dify) > std::get<1>(attrs)[1] ? std::get<1>(attrs)[1] : dims[3] + dify); + const std::size_t syMax = (static_cast<signedsize>(dims[3]) + dify) < 0 ? 0 : ((dims[3] + dify) > kernelDims[1] ? kernelDims[1] : dims[3] + dify); const std::size_t oIndexFull = oIndex + ox*oySize + oy; - const std::size_t ix = ox * std::get<0>(attrs)[0]; - const std::size_t iy = oy * std::get<0>(attrs)[1]; + const std::size_t ix = ox * strideDims[0]; + const std::size_t iy = oy * strideDims[1]; if (sxMin == 0 && syMin == 0 && sxMax == 3 && syMax == 3) { output[oIndexFull] += static_cast<O>( diff --git a/include/aidge/backend/cpu/operator/BatchNormImpl.hpp b/include/aidge/backend/cpu/operator/BatchNormImpl.hpp index 8bd567dab3d564ccdeffdc581585e404fc4697a4..93bdab2d3f37e3bd8dc1e68ab68a05de8c8015ed 100644 --- a/include/aidge/backend/cpu/operator/BatchNormImpl.hpp +++ b/include/aidge/backend/cpu/operator/BatchNormImpl.hpp @@ -30,26 +30,28 @@ namespace Aidge { class BatchNormImpl2DForward_cpu : public Registrable<BatchNormImpl2DForward_cpu, std::tuple<DataType, DataType, DataType>, - void(const BatchNorm_Op<2>::Attrs &, - const std::array<DimSize_t, 4> &, - const void *, - const void *, - const void *, - void *, - void *, - void *, - const bool)> {}; + void(float, + float, + const std::array<DimSize_t, 4> &, + const void *, + const void *, + const void *, + void *, + void *, + void *, + const bool)> {}; class BatchNormImpl2DBackward_cpu : public Registrable<BatchNormImpl2DBackward_cpu, std::tuple<DataType, DataType, DataType>, - void(const BatchNorm_Op<2>::Attrs &, - const std::array<DimSize_t, 4> &, - const void *, - const void *, - const void *, - void *, - void *, - void *)> {}; + void(float, + float, + const std::array<DimSize_t, 4> &, + const void *, + const void *, + const void *, + void *, + void *, + void *)> {}; class BatchNormImpl2D_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/BatchNormImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/BatchNormImpl_forward_kernels.hpp index cfde6ebe7cab8cfe2f793723983c8552bd9747b8..19f232a783bccf0a800d41f2bc566ccf6e04f05e 100644 --- a/include/aidge/backend/cpu/operator/BatchNormImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/BatchNormImpl_forward_kernels.hpp @@ -38,7 +38,7 @@ namespace Aidge { * @param output_ Output Tensor. */ template <class I, class P, class O> -void BatchNormImpl2D_cpu_forward_kernel(const BatchNorm_Op<2>::Attrs &attrs, const std::array<DimSize_t, 4> &dims, +void BatchNormImpl2D_cpu_forward_kernel(float epsilon, float momentum, const std::array<DimSize_t, 4> &dims, const void *input_, const void *scale_, const void *shift_, void *batchMean_, void *batchVar_, void *output_, const bool freeze) { // FIXME: missing convolution attributes as arguments const I *input = static_cast<const I *>(input_); @@ -53,12 +53,12 @@ void BatchNormImpl2D_cpu_forward_kernel(const BatchNorm_Op<2>::Attrs &attrs, con const DimSize_t featureMapSize = dims[2]*dims[3]; - if ((freeze == true) || (std::get<1>(attrs) == 0.0f)) { + if ((freeze == true) || (momentum == 0.0f)) { for (std::size_t batch = 0; batch < nbBatch; ++batch) { for (std::size_t ch = 0; ch < nbChannels; ++ch) { const std::size_t ioIndex = (ch + batch*nbChannels) * featureMapSize; std::fill(output + ioIndex, output + ioIndex + featureMapSize, shift[ch]); - const P var = std::sqrt(batchVar[ch] + static_cast<P>(std::get<0>(attrs))); + const P var = std::sqrt(batchVar[ch] + static_cast<P>(epsilon)); for (std::size_t feature = 0; feature<featureMapSize; ++feature) { output[ioIndex + feature] += scale[ch] * (input[ioIndex + feature]-batchMean[ch]) / var; @@ -82,10 +82,10 @@ void BatchNormImpl2D_cpu_forward_kernel(const BatchNorm_Op<2>::Attrs &attrs, con const I inputMean = sum / static_cast<I>(nbDataPerChannel); const I inputVar = sumSquare / static_cast<I>(nbDataPerChannel) - inputMean*inputMean; - batchMean[ch] = batchMean[ch]*(1-std::get<1>(attrs)) + inputMean*std::get<1>(attrs); - batchVar[ch] = batchVar[ch]*(1-std::get<1>(attrs)) + inputVar*(static_cast<I>(nbDataPerChannel)/static_cast<I>(nbDataPerChannel-1))*std::get<1>(attrs); + batchMean[ch] = batchMean[ch]*(1-momentum) + inputMean*momentum; + batchVar[ch] = batchVar[ch]*(1-momentum) + inputVar*(static_cast<I>(nbDataPerChannel)/static_cast<I>(nbDataPerChannel-1))*momentum; - const P var = std::sqrt(inputVar + static_cast<P>(std::get<0>(attrs))); + const P var = std::sqrt(inputVar + static_cast<P>(epsilon)); for (std::size_t batch = 0; batch < nbBatch; ++batch) { const std::size_t ioIndex = (ch + batch*nbChannels) * featureMapSize; for (std::size_t feature = 0; feature<featureMapSize; ++feature) { diff --git a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp index aa3b10970b1cd9beeead4353ff0c2b3d65fd9a83..ec886a310dd2edc616ced6ee447665eab3ce301a 100644 --- a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp +++ b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp @@ -29,8 +29,14 @@ namespace Aidge { class ConvDepthWiseImpl1DForward_cpu : public Registrable<ConvDepthWiseImpl1DForward_cpu, std::tuple<DataType, DataType, DataType, DataType>, - void(const ConvDepthWise_Op<1>::Attrs &, const std::array<DimSize_t, 3> &, const void *, - const void *, const void *, void *)> {}; + void(const std::array<DimSize_t, 1>&, + const std::array<DimSize_t, 1>&, + const std::array<DimSize_t, 1>&, + const std::array<DimSize_t, 3>&, + const void *, + const void *, + const void *, + void *)> {}; class ConvDepthWiseImpl1D_cpu : public OperatorImpl { public: @@ -53,13 +59,26 @@ static Registrar<ConvDepthWise_Op<1>> registrarConvDepthWiseImpl1D_cpu("cpu", Ai class ConvDepthWiseImpl2DForward_cpu : public Registrable<ConvDepthWiseImpl2DForward_cpu, std::tuple<DataType, DataType, DataType, DataType>, - void(const ConvDepthWise_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, - const void *, const void *, void *)> {}; + void(const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 4> &, + const void *, + const void *, + const void *, + void *)> {}; class ConvDepthWiseImpl2DBackward_cpu : public Registrable<ConvDepthWiseImpl2DBackward_cpu, std::tuple<DataType, DataType, DataType, DataType>, - void(const ConvDepthWise_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, - const void *, const void *, void *)> {}; + void(const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + bool, + const std::array<DimSize_t, 4> &, + const void *, + const void *, + const void *, + void *)> {}; class ConvDepthWiseImpl2D_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp index db44ffe4313e6a6e03ecd279dc0262fece00b567..a02aa672b92f089790ef1903af8b804f816f3baa 100644 --- a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp @@ -37,8 +37,14 @@ namespace Aidge { * @param output_ Output Tensor. */ template <class I, class W, class B, class O> -void ConvDepthWiseImpl1D_cpu_forward_kernel(const ConvDepthWise_Op<1>::Attrs &attrs, const std::array<DimSize_t, 3> &inputDims, - const void *input_, const void *weights_, const void *biases_, void *output_) { +void ConvDepthWiseImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 1>& strideDims, + const std::array<DimSize_t, 1>& /*dilationDims*/, + const std::array<DimSize_t, 1>& kernelDims, + const std::array<DimSize_t, 3>& inputDims, + const void *input_, + const void *weights_, + const void *biases_, + void *output_) { // FIXME: missing convolution attributes as arguments const I *input = static_cast<const I *>(input_); const W *weights = static_cast<const W *>(weights_); @@ -48,8 +54,8 @@ void ConvDepthWiseImpl1D_cpu_forward_kernel(const ConvDepthWise_Op<1>::Attrs &at // output H size const std::size_t oxSize = - static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - std::get<2>(attrs)[0] + std::get<0>(attrs)[0]) / - static_cast<float>(std::get<0>(attrs)[0]))); + static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - kernelDims[0] + strideDims[0]) / + static_cast<float>(strideDims[0]))); // TODO: kernel computation // output (batch, outCh, Xout, Yout) @@ -63,13 +69,13 @@ void ConvDepthWiseImpl1D_cpu_forward_kernel(const ConvDepthWise_Op<1>::Attrs &at B biasVal = (biases != nullptr) ? biases[ch] : B(0); std::fill(output + oIndex, output+(oIndex+oxSize), biasVal); const std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2]; - const std::size_t wIndex = ch * std::get<2>(attrs)[0]; + const std::size_t wIndex = ch * kernelDims[0]; for (std::size_t ox = 0; ox < oxSize; ++ox) { - const signedsize difx = static_cast<signedsize>(- ox * std::get<0>(attrs)[0]); + const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]); const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0))); - const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > std::get<2>(attrs)[0] ? std::get<2>(attrs)[0] : inputDims[2] + difx); + const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx); const std::size_t oIndexFull = oIndex + ox; - const signedsize ix = static_cast<signedsize>(ox * std::get<0>(attrs)[0]); + const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); for (std::size_t sx = sxMin; sx < sxMax; ++sx) { output[oIndexFull] += weights[wIndex + sx] * @@ -86,7 +92,7 @@ static Registrar<ConvDepthWiseImpl1DForward_cpu> registrarConvDepthWiseImpl1DFor Aidge::ConvDepthWiseImpl1D_cpu_forward_kernel<float, float, float, float>); static Registrar<ConvDepthWiseImpl1DForward_cpu> registrarConvDepthWiseImpl1DForward_cpu_Int32( {DataType::Int32, DataType::Int32, DataType::Int32, DataType::Int32}, - Aidge::ConvDepthWiseImpl1D_cpu_forward_kernel<int, int, int, int>); + Aidge::ConvDepthWiseImpl1D_cpu_forward_kernel<std::int32_t, std::int32_t, std::int32_t, std::int32_t>); static Registrar<ConvDepthWiseImpl1DForward_cpu> registrarConvDepthWiseImpl1DForward_cpu_Float64( {DataType::Float64, DataType::Float64, DataType::Float64, DataType::Float64}, Aidge::ConvDepthWiseImpl1D_cpu_forward_kernel<double, double, double, double>); @@ -107,8 +113,15 @@ static Registrar<ConvDepthWiseImpl1DForward_cpu> registrarConvDepthWiseImpl1DFor * @param output_ Output Tensor. */ template <class I, class W, class B, class O> -void ConvDepthWiseImpl2D_cpu_forward_kernel(const ConvDepthWise_Op<2>::Attrs &attrs, const std::array<DimSize_t, 4> &inputDims, - const void *input_, const void *weights_, const void *biases_, void *output_) { +void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims, + const std::array<DimSize_t, 2>& /*dilationDims*/, + const std::array<DimSize_t, 2>& kernelDims, + const std::array<DimSize_t, 4>& inputDims, + const void *input_, + const void *weights_, + const void *biases_, + void *output_) +{ // FIXME: missing convolution attributes as arguments const I *input = static_cast<const I *>(input_); const W *weights = static_cast<const W *>(weights_); @@ -118,12 +131,12 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const ConvDepthWise_Op<2>::Attrs &at // output H size const std::size_t oxSize = - static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - std::get<2>(attrs)[0] + std::get<0>(attrs)[0]) / - static_cast<float>(std::get<0>(attrs)[0]))); + static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - kernelDims[0] + strideDims[0]) / + static_cast<float>(strideDims[0]))); // output W size const std::size_t oySize = - static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[3] - std::get<2>(attrs)[1] + std::get<0>(attrs)[1]) / - static_cast<float>(std::get<0>(attrs)[1]))); + static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[3] - kernelDims[1] + strideDims[1]) / + static_cast<float>(strideDims[1]))); // TODO: kernel computation // output (batch, outCh, Xout, Yout) @@ -137,33 +150,33 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const ConvDepthWise_Op<2>::Attrs &at B biasVal = (biases != nullptr) ? biases[ch] : B(0); std::fill(output + oIndex, output+(oIndex+oxSize*oySize), biasVal); const std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2] * inputDims[3]; - const std::size_t wIndex = ch * std::get<2>(attrs)[0] * std::get<2>(attrs)[1]; + const std::size_t wIndex = ch * kernelDims[0] * kernelDims[1]; for (std::size_t ox = 0; ox < oxSize; ++ox) { - const signedsize difx = static_cast<signedsize>(- ox * std::get<0>(attrs)[0]); + const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]); const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0))); - const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > std::get<2>(attrs)[0] ? std::get<2>(attrs)[0] : inputDims[2] + difx); + const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx); for (std::size_t oy = 0; oy < oySize; ++oy) { - const signedsize dify = static_cast<signedsize>(- oy * std::get<0>(attrs)[1]); + const signedsize dify = static_cast<signedsize>(- oy * strideDims[1]); const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0))); - const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > std::get<2>(attrs)[1] ? std::get<2>(attrs)[1] : inputDims[3] + dify); + const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > kernelDims[1] ? kernelDims[1] : inputDims[3] + dify); const std::size_t oIndexFull = oIndex + ox*oySize + oy; - const signedsize ix = static_cast<signedsize>(ox * std::get<0>(attrs)[0]); - const signedsize iy = static_cast<signedsize>(oy * std::get<0>(attrs)[1]); + const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); + const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); if (sxMin == 0 && syMin == 0 && sxMax == 3 && syMax == 3) { - output[oIndexFull] += (weights[wIndex + 0*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] + - weights[wIndex + 0*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] + - weights[wIndex + 0*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] + - weights[wIndex + 1*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] + - weights[wIndex + 1*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] + - weights[wIndex + 1*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] + - weights[wIndex + 2*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] + - weights[wIndex + 2*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] + - weights[wIndex + 2*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]); + output[oIndexFull] += (weights[wIndex + 0*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] + + weights[wIndex + 0*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] + + weights[wIndex + 0*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] + + weights[wIndex + 1*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] + + weights[wIndex + 1*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] + + weights[wIndex + 1*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] + + weights[wIndex + 2*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] + + weights[wIndex + 2*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] + + weights[wIndex + 2*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]); } else { for (std::size_t sx = sxMin; sx < sxMax; ++sx) { for (std::size_t sy = syMin; sy < syMax; ++sy) { - output[oIndexFull] += weights[wIndex + sx*std::get<2>(attrs)[1] + sy] * + output[oIndexFull] += weights[wIndex + sx*kernelDims[1] + sy] * input[iIndex + static_cast<std::size_t>(ix+static_cast<signedsize>(sx))*inputDims[3] + static_cast<std::size_t>(iy+static_cast<signedsize>(sy))]; } } @@ -180,7 +193,7 @@ static Registrar<ConvDepthWiseImpl2DForward_cpu> registrarConvDepthWiseImpl2DFor Aidge::ConvDepthWiseImpl2D_cpu_forward_kernel<float, float, float, float>); static Registrar<ConvDepthWiseImpl2DForward_cpu> registrarConvDepthWiseImpl2DForward_cpu_Int32( {DataType::Int32, DataType::Int32, DataType::Int32, DataType::Int32}, - Aidge::ConvDepthWiseImpl2D_cpu_forward_kernel<int, int, int, int>); + Aidge::ConvDepthWiseImpl2D_cpu_forward_kernel<std::int32_t, std::int32_t, std::int32_t, std::int32_t>); static Registrar<ConvDepthWiseImpl2DForward_cpu> registrarConvDepthWiseImpl2DForward_cpu_Float64( {DataType::Float64, DataType::Float64, DataType::Float64, DataType::Float64}, Aidge::ConvDepthWiseImpl2D_cpu_forward_kernel<double, double, double, double>); diff --git a/include/aidge/backend/cpu/operator/ConvImpl.hpp b/include/aidge/backend/cpu/operator/ConvImpl.hpp index 1d85b31fbdbb6ac9a61ddba08d3f2c3df8ca91e3..d7be46c251a82d1b631f4ad50e7175fa2f896d03 100644 --- a/include/aidge/backend/cpu/operator/ConvImpl.hpp +++ b/include/aidge/backend/cpu/operator/ConvImpl.hpp @@ -31,8 +31,15 @@ namespace Aidge { class ConvImpl1DForward_cpu : public Registrable<ConvImpl1DForward_cpu, std::tuple<DataType, DataType, DataType, DataType>, - void(const Conv_Op<1>::Attrs &, const std::array<DimSize_t, 3> &, DimSize_t, const void *, - const void *, const void *, void *)> {}; + void(const std::array<DimSize_t, 1>&, + const std::array<DimSize_t, 1>&, + const std::array<DimSize_t, 1>&, + const std::array<DimSize_t, 3> &, + DimSize_t, + const void *, + const void *, + const void *, + void *)> {}; class ConvImpl1D_cpu : public OperatorImpl { public: @@ -56,13 +63,27 @@ static Registrar<Conv_Op<1>> registrarConvImpl1D_cpu("cpu", Aidge::ConvImpl1D_cp class ConvImpl2DForward_cpu : public Registrable<ConvImpl2DForward_cpu, std::tuple<DataType, DataType, DataType, DataType>, - void(const Conv_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, DimSize_t, const void *, - const void *, const void *, void *)> {}; + void(const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 4> &, + DimSize_t, + const void *, + const void *, + const void *, + void *)> {}; class ConvImpl2DBackward_cpu : public Registrable<ConvImpl2DBackward_cpu, std::tuple<DataType, DataType, DataType, DataType>, - void(const Conv_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, - const void *, const void *, void *)> {}; + void(const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + bool, + const std::array<DimSize_t, 4> &, + const void *, + const void *, + const void *, + void *)> {}; class ConvImpl2D_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/ConvImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ConvImpl_forward_kernels.hpp index 718fc879fcc1124260901cdd06b059da6e8c7395..88a71c47244788f2da5e576c8ad5170a92561909 100644 --- a/include/aidge/backend/cpu/operator/ConvImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ConvImpl_forward_kernels.hpp @@ -12,15 +12,15 @@ #ifndef AIDGE_CPU_OPERATOR_CONVIMPL_FORWARD_KERNEL_H_ #define AIDGE_CPU_OPERATOR_CONVIMPL_FORWARD_KERNEL_H_ -#include "aidge/utils/Registrar.hpp" +#include <algorithm> +#include <array> +#include <cmath> -#include "aidge/data/half.hpp" +#include "aidge/backend/cpu/data/GetCPUPtr.h" #include "aidge/backend/cpu/operator/ConvImpl.hpp" +#include "aidge/data/half.hpp" +#include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" -#include "aidge/backend/cpu/data/GetCPUPtr.h" -#include <cmath> -#include <array> -#include <algorithm> namespace Aidge { /** @@ -37,8 +37,16 @@ namespace Aidge { * @param output_ Output Tensor. */ template <class I, class W, class B, class O> -void ConvImpl1D_cpu_forward_kernel(const Conv_Op<1>::Attrs &attrs, const std::array<DimSize_t, 3> &inputDims, DimSize_t outChannels, - const void *input_, const void *weights_, const void *biases_, void *output_) { +void ConvImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 1>& strideDims, + const std::array<DimSize_t, 1>& /*dilationDims*/, + const std::array<DimSize_t, 1>& kernelDims, + const std::array<DimSize_t, 3>& inputDims, + DimSize_t outChannels, + const void *input_, + const void *weights_, + const void *biases_, + void *output_) +{ // FIXME: missing convolution attributes as arguments const I *input = static_cast<const I *>(input_); const W *weights = static_cast<const W *>(weights_); @@ -47,8 +55,8 @@ void ConvImpl1D_cpu_forward_kernel(const Conv_Op<1>::Attrs &attrs, const std::ar // output H size const std::size_t oxSize = - static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - std::get<2>(attrs)[0] + std::get<0>(attrs)[0]) / - static_cast<float>(std::get<0>(attrs)[0]))); + static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - kernelDims[0] + strideDims[0]) / + static_cast<float>(strideDims[0]))); // TODO: kernel computation // output (batch, outCh, Xout, Yout) @@ -64,13 +72,13 @@ void ConvImpl1D_cpu_forward_kernel(const Conv_Op<1>::Attrs &attrs, const std::ar std::fill(output + oIndex, output+(oIndex+oxSize), biasVal); for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) { const std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2]; - const std::size_t wIndex = (inCh + outCh*inputDims[1]) * std::get<2>(attrs)[0]; + const std::size_t wIndex = (inCh + outCh*inputDims[1]) * kernelDims[0]; for (std::size_t ox = 0; ox < oxSize; ++ox) { - const signedsize difx = static_cast<signedsize>(- ox * std::get<0>(attrs)[0]); + const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]); const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0))); - const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > std::get<2>(attrs)[0] ? std::get<2>(attrs)[0] : inputDims[2] + difx); + const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx); const std::size_t oIndexFull = oIndex + ox; - const signedsize ix = static_cast<signedsize>(ox * std::get<0>(attrs)[0]); + const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); for (std::size_t sx = sxMin; sx < sxMax; ++sx) { output[oIndexFull] += weights[wIndex + sx] * @@ -112,8 +120,16 @@ static Registrar<ConvImpl1DForward_cpu> registrarConvImpl1DForward_cpu_Float64( * @param output_ Output Tensor. */ template <class I, class W, class B, class O> -void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::array<DimSize_t, 4> &inputDims, DimSize_t outChannels, - const void *input_, const void *weights_, const void *biases_, void *output_) { +void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims, + const std::array<DimSize_t, 2>& /*dilationDims*/, + const std::array<DimSize_t, 2>& kernelDims, + const std::array<DimSize_t, 4> &inputDims, + DimSize_t outChannels, + const void *input_, + const void *weights_, + const void *biases_, + void *output_) +{ // FIXME: missing convolution attributes as arguments const I *input = static_cast<const I *>(input_); const W *weights = static_cast<const W *>(weights_); @@ -122,12 +138,12 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::ar /* // output H size const std::size_t oxSize = - static_cast<std::size_t>(static_cast<float>(inputDims[0] - std::get<2>(attrs)[0] + std::get<0>(attrs)[0]) / - static_cast<float>(std::get<0>(attrs)[0])); + static_cast<std::size_t>(static_cast<float>(inputDims[0] - kernelDims[0] + strideDims[0]) / + static_cast<float>(strideDims[0])); // output W size const std::size_t oySize = - static_cast<std::size_t>(static_cast<float>(inputDims[1] - std::get<2>(attrs)[1] + std::get<0>(attrs)[1]) / - static_cast<float>(std::get<0>(attrs)[1])); + static_cast<std::size_t>(static_cast<float>(inputDims[1] - kernelDims[1] + strideDims[1]) / + static_cast<float>(strideDims[1])); // TODO: kernel computation // output (Xout, Yout, outCh, batch) @@ -136,8 +152,8 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::ar // does not take Dilation attribute into account for (std::size_t ox = 0; ox < oxSize; ++ox) { for (std::size_t oy = 0; oy < oySize; ++oy) { - const std::size_t ix = ox * std::get<0>(attrs)[0]; - const std::size_t iy = oy * std::get<0>(attrs)[1]; + const std::size_t ix = ox * strideDims[0]; + const std::size_t iy = oy * strideDims[1]; for (std::size_t outCh = 0; outCh < outChannels; ++outCh) { const std::size_t oIndex = inputDims[3] * (outCh + outChannels * (oy + oySize * ox)); @@ -146,10 +162,10 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::ar output[oIndex + batch] = biasVal; } for (std::size_t inCh = 0; inCh < inputDims[2]; ++inCh) { - for (std::size_t sx = 0; sx < std::get<2>(attrs)[0]; ++sx) { - for (std::size_t sy = 0; sy < std::get<2>(attrs)[1]; ++sy) { + for (std::size_t sx = 0; sx < kernelDims[0]; ++sx) { + for (std::size_t sy = 0; sy < kernelDims[1]; ++sy) { const std::size_t wIndex = - outCh + outChannels * (inCh + inputDims[2] * (sy + std::get<2>(attrs)[1] * sx)); + outCh + outChannels * (inCh + inputDims[2] * (sy + kernelDims[1] * sx)); std::size_t iIndex = inputDims[3] * (inCh + inputDims[2] * ((iy + sy) + inputDims[1] * (ix + sx))); for (std::size_t batch = 0; batch < inputDims[3]; ++batch) { output[oIndex + batch] += weights[wIndex] * input[iIndex + batch]; @@ -165,12 +181,12 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::ar // output H size const std::size_t oxSize = - static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - std::get<2>(attrs)[0] + std::get<0>(attrs)[0]) / - static_cast<float>(std::get<0>(attrs)[0]))); + static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - kernelDims[0] + strideDims[0]) / + static_cast<float>(strideDims[0]))); // output W size const std::size_t oySize = - static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[3] - std::get<2>(attrs)[1] + std::get<0>(attrs)[1]) / - static_cast<float>(std::get<0>(attrs)[1]))); + static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[3] - kernelDims[1] + strideDims[1]) / + static_cast<float>(strideDims[1]))); // TODO: kernel computation // output (batch, outCh, Xout, Yout) @@ -186,33 +202,33 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::ar std::fill(output + oIndex, output+(oIndex+oxSize*oySize), biasVal); for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) { const std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3]; - const std::size_t wIndex = (inCh + outCh*inputDims[1]) * std::get<2>(attrs)[0] * std::get<2>(attrs)[1]; + const std::size_t wIndex = (inCh + outCh*inputDims[1]) * kernelDims[0] * kernelDims[1]; for (std::size_t ox = 0; ox < oxSize; ++ox) { - const signedsize difx = static_cast<signedsize>(- ox * std::get<0>(attrs)[0]); + const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]); const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0))); - const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > std::get<2>(attrs)[0] ? std::get<2>(attrs)[0] : inputDims[2] + difx); + const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx); for (std::size_t oy = 0; oy < oySize; ++oy) { - const signedsize dify = static_cast<signedsize>(- oy * std::get<0>(attrs)[1]); + const signedsize dify = static_cast<signedsize>(- oy * strideDims[1]); const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0))); - const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > std::get<2>(attrs)[1] ? std::get<2>(attrs)[1] : inputDims[3] + dify); + const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > kernelDims[1] ? kernelDims[1] : inputDims[3] + dify); const std::size_t oIndexFull = oIndex + ox*oySize + oy; - const signedsize ix = static_cast<signedsize>(ox * std::get<0>(attrs)[0]); - const signedsize iy = static_cast<signedsize>(oy * std::get<0>(attrs)[1]); + const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); + const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); if (sxMin == 0 && syMin == 0 && sxMax == 3 && syMax == 3) { - output[oIndexFull] += (weights[wIndex + 0*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] + - weights[wIndex + 0*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] + - weights[wIndex + 0*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] + - weights[wIndex + 1*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] + - weights[wIndex + 1*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] + - weights[wIndex + 1*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] + - weights[wIndex + 2*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] + - weights[wIndex + 2*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] + - weights[wIndex + 2*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]); + output[oIndexFull] += (weights[wIndex + 0*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] + + weights[wIndex + 0*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] + + weights[wIndex + 0*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] + + weights[wIndex + 1*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] + + weights[wIndex + 1*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] + + weights[wIndex + 1*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] + + weights[wIndex + 2*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] + + weights[wIndex + 2*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] + + weights[wIndex + 2*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]); } else { for (std::size_t sx = sxMin; sx < sxMax; ++sx) { for (std::size_t sy = syMin; sy < syMax; ++sy) { - output[oIndexFull] += weights[wIndex + sx*std::get<2>(attrs)[1] + sy] * + output[oIndexFull] += weights[wIndex + sx*kernelDims[1] + sy] * input[iIndex + static_cast<std::size_t>(ix+static_cast<signedsize>(sx))*inputDims[3] + static_cast<std::size_t>(iy+static_cast<signedsize>(sy))]; } } diff --git a/include/aidge/backend/cpu/operator/FCImpl.hpp b/include/aidge/backend/cpu/operator/FCImpl.hpp index f9f97ffd097276704a97edf2de85ffd3a4b19697..f21cd0ff330f61b942eb55f036c7b23458a5959a 100644 --- a/include/aidge/backend/cpu/operator/FCImpl.hpp +++ b/include/aidge/backend/cpu/operator/FCImpl.hpp @@ -12,14 +12,14 @@ #ifndef AIDGE_CPU_OPERATOR_FCIMPL_H_ #define AIDGE_CPU_OPERATOR_FCIMPL_H_ +#include <array> +#include <memory> +#include <vector> + #include "aidge/backend/OperatorImpl.hpp" #include "aidge/operator/FC.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" -#include "aidge/backend/cpu/data/GetCPUPtr.h" -#include <memory> -#include <vector> -#include <array> namespace Aidge { // class FC_Op; @@ -30,29 +30,27 @@ class FCImplForward_cpu : public Registrable<FCImplForward_cpu, DataType, DataType, DataType>, - void( + void(const DimSize_t, const DimSize_t, - const DimSize_t, - const DimSize_t, - const void *, - const void *, - const void *, - void *)> {}; + const DimSize_t, + const void *, + const void *, + const void *, + void *)> {}; class FCImplBackward_cpu : public Registrable<FCImplBackward_cpu, std::tuple<DataType, DataType, DataType, DataType>, - void( + void(const DimSize_t, + const DimSize_t, const DimSize_t, - const DimSize_t, - const DimSize_t, - const void *, - const void *, - const void *, - void *, - void *, - void *)> {}; + const void *, + const void *, + const void *, + void *, + void *, + void *)> {}; class FCImpl_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/FCImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/FCImpl_forward_kernels.hpp index a82e8850e1575b52a786df2935efbd2cd93cf8f1..caeacd1bda2fde086fd649c50a733e790fc2c000 100644 --- a/include/aidge/backend/cpu/operator/FCImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/FCImpl_forward_kernels.hpp @@ -83,9 +83,13 @@ namespace Aidge { // } template <class I, class W, class B, class O> -void FCImpl_cpu_forward_kernel(const DimSize_t batchSize, const DimSize_t inputFeatureSize, - const DimSize_t outputFeatureSize, - const void* input_, const void* weights_, const void* biases_, void* output_) { +void FCImpl_cpu_forward_kernel(const DimSize_t batchSize, + const DimSize_t inputFeatureSize, + const DimSize_t outputFeatureSize, + const void* input_, + const void* weights_, + const void* biases_, + void* output_) { // FIXME: missing FC attributes as arguments const I* input = static_cast<const I*>(input_); const W* weights = static_cast<const W*>(weights_); diff --git a/include/aidge/backend/cpu/operator/LeakyReLUImpl.hpp b/include/aidge/backend/cpu/operator/LeakyReLUImpl.hpp index 880a59b3aeae2598f6b1ed5e287af18fd7bcfd6f..c9ad909eee631189a81067eda076c0b8cbb13377 100644 --- a/include/aidge/backend/cpu/operator/LeakyReLUImpl.hpp +++ b/include/aidge/backend/cpu/operator/LeakyReLUImpl.hpp @@ -25,11 +25,19 @@ namespace Aidge { // compute kernel registry for forward and backward class LeakyReLUImplForward_cpu - : public Registrable<LeakyReLUImplForward_cpu, std::tuple<DataType, DataType>, void(const LeakyReLU_Op::Attrs&, std::size_t, const void*, void*)> { -}; + : public Registrable<LeakyReLUImplForward_cpu, + std::tuple<DataType, DataType>, + void(const float, + std::size_t, + const void*, + void*)> {}; class LeakyReLUImplBackward_cpu - : public Registrable<LeakyReLUImplBackward_cpu, std::tuple<DataType, DataType>, void(const LeakyReLU_Op::Attrs&, std::size_t, const void*, void*)> { -}; + : public Registrable<LeakyReLUImplBackward_cpu, + std::tuple<DataType, DataType>, + void(const float, + std::size_t, + const void*, + void*)> {}; class LeakyReLUImpl_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp b/include/aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp index 949e6af66a476693b347f38a45edea10e21bc933..e308d940890101ad396c7ed20541bbc4f8b035cf 100644 --- a/include/aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp @@ -18,17 +18,17 @@ namespace Aidge { template <class I, class O> -void LeakyReLUImpl_cpu_backward_kernel(const LeakyReLU_Op::Attrs& attrs, +void LeakyReLUImpl_cpu_backward_kernel(const float negativeSlope_, std::size_t inputLenght, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - I negativeSlope = static_cast<I>(std::get<0>(attrs)); + const I negativeSlope = static_cast<const I>(negativeSlope_); for (std::size_t i = 0; i < inputLenght; ++i) { - output[i] = input[i] > 0 ? input[i] : negativeSlope*input[i]; + output[i] = (input[i] > 0) ? input[i] : negativeSlope*input[i]; } } diff --git a/include/aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp index d10b32e18ee983fc1270bc4a7cce35e18f601071..450d0bf4ace4879f90e0104e14b5bf61366e96c2 100644 --- a/include/aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp @@ -18,17 +18,17 @@ namespace Aidge { template <class I, class O> -void LeakyReLUImpl_cpu_forward_kernel(const LeakyReLU_Op::Attrs& attrs, +void LeakyReLUImpl_cpu_forward_kernel(const float negativeSlope_, std::size_t inputLenght, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - const I negativeSlope = static_cast<const I>(std::get<0>(attrs)); + const I negativeSlope = static_cast<const I>(negativeSlope_); for (std::size_t i = 0; i < inputLenght; ++i) { - output[i] = input[i] >= 0 ? input[i] : input[i] * negativeSlope; + output[i] = (input[i] >= 0) ? input[i] : input[i] * negativeSlope; } } diff --git a/include/aidge/backend/cpu/operator/MaxPoolingImpl.hpp b/include/aidge/backend/cpu/operator/MaxPoolingImpl.hpp index d2d30aa7db5b1522712faa846ef33e1b21772d5e..4dd30e1fb939837f6861313eda04d7d05f3c8110 100644 --- a/include/aidge/backend/cpu/operator/MaxPoolingImpl.hpp +++ b/include/aidge/backend/cpu/operator/MaxPoolingImpl.hpp @@ -29,12 +29,22 @@ namespace Aidge { // compute kernel registry for forward and backward class MaxPoolingImpl2DForward_cpu : public Registrable<MaxPoolingImpl2DForward_cpu, - std::tuple<DataType, DataType>, - void(const MaxPooling_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, void *)> {}; + std::tuple<DataType, DataType>, + void(const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + const bool, + const std::array<DimSize_t, 4> &, + const void *, + void *)> {}; class MaxPoolingImpl2DBackward_cpu : public Registrable<MaxPoolingImpl2DBackward_cpu, - std::tuple<DataType, DataType>, - void(const MaxPooling_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, void *)> {}; + std::tuple<DataType, DataType>, + void(const std::array<DimSize_t, 2>&, + const std::array<DimSize_t, 2>&, + const bool, + const std::array<DimSize_t, 4> &, + const void *, + void *)> {}; class MaxPoolingImpl2D_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp index c4baccdee5def0be93be42b5657d77d21240328c..79a7bd154f4d4e19a71d719597992466c37c6a9f 100644 --- a/include/aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp @@ -12,15 +12,15 @@ #ifndef AIDGE_CPU_OPERATOR_MaxPOOLINGIMPL_FORWARD_KERNEL_H_ #define AIDGE_CPU_OPERATOR_MaxPOOLINGIMPL_FORWARD_KERNEL_H_ -#include "aidge/utils/Registrar.hpp" +#include <array> +#include <cmath> +#include <tuple> #include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp" -#include "aidge/utils/Types.h" #include "aidge/backend/cpu/data/GetCPUPtr.h" #include "aidge/data/Data.hpp" -#include <array> -#include <tuple> -#include <cmath> +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" namespace Aidge { /** @@ -33,17 +33,16 @@ namespace Aidge { * @param output_ Output Tensor. */ template <class I, class O> -void MaxPoolingImpl2D_cpu_forward_kernel(const MaxPooling_Op<2>::Attrs &attrs, - const std::array<DimSize_t, 4> &dims, - const void *input_, - void *output_) { +void MaxPoolingImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims, + const std::array<DimSize_t, 2>& kernelDims, + const bool /*ceilMode*/, + const std::array<DimSize_t, 4> &dims, + const void *input_, + void *output_) { // FIXME: missing convolution parameters as arguments const I *input = static_cast<const I *>(input_); O *output = static_cast<O *>(output_); - std::array<DimSize_t, 2> strideDims = std::get<0>(attrs); - std::array<DimSize_t, 2> kernelDims = std::get<1>(attrs); - // output H size const std::size_t oxSize = static_cast<std::size_t>(std::floor(static_cast<float>(dims[2] - kernelDims[0] + strideDims[0]) / diff --git a/include/aidge/backend/cpu/operator/PadImpl.hpp b/include/aidge/backend/cpu/operator/PadImpl.hpp index 72d60fc16f6d730a5cbd4941da03bfbcf72ff85b..c6e41c29fd203fdd80b2acb9ad0dfcac91a0f66c 100644 --- a/include/aidge/backend/cpu/operator/PadImpl.hpp +++ b/include/aidge/backend/cpu/operator/PadImpl.hpp @@ -29,8 +29,12 @@ namespace Aidge { class PadImpl1DForward_cpu : public Registrable<PadImpl1DForward_cpu, std::tuple<DataType, DataType>, - void(const Pad_Op<1>::Attrs &, const std::array<DimSize_t, 3> &, const void *, - void *)> {}; + void(const std::array<DimSize_t, 2>&, + const PadBorderType, + const double, + const std::array<DimSize_t, 3> &, + const void *, + void *)> {}; class PadImpl1D_cpu : public OperatorImpl { public: @@ -54,13 +58,21 @@ static Registrar<Pad_Op<1>> registrarPadImpl1D_cpu("cpu", Aidge::PadImpl1D_cpu:: class PadImpl2DForward_cpu : public Registrable<PadImpl2DForward_cpu, std::tuple<DataType, DataType>, - void(const Pad_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, - void *)> {}; + void(const std::array<DimSize_t, 4>&, + const PadBorderType, + const double, + const std::array<DimSize_t, 4> &, + const void *, + void *)> {}; class PadImpl2DBackward_cpu : public Registrable<PadImpl2DBackward_cpu, std::tuple<DataType, DataType>, - void(const Pad_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, - void *)> {}; + void(const std::array<DimSize_t, 4>&, + const PadBorderType, + const double, + const std::array<DimSize_t, 4> &, + const void *, + void *)> {}; class PadImpl2D_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/PadImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/PadImpl_forward_kernels.hpp index c9f6b708d1aaeed71d0836fa3b6feb08c1093559..26c873c8fe7f140b09b31d0f1a9d4125acbcf50f 100644 --- a/include/aidge/backend/cpu/operator/PadImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/PadImpl_forward_kernels.hpp @@ -12,14 +12,14 @@ #ifndef AIDGE_CPU_OPERATOR_PADIMPL_FORWARD_KERNEL_H_ #define AIDGE_CPU_OPERATOR_PADIMPL_FORWARD_KERNEL_H_ -#include "aidge/utils/Registrar.hpp" +#include <algorithm> // std::max, std::min +#include <array> +#include <cstddef> // std::size_t +#include <cstdint> // std::int32_t #include "aidge/backend/cpu/operator/PadImpl.hpp" +#include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" -#include "aidge/backend/cpu/data/GetCPUPtr.h" -#include <cmath> -#include <array> -#include <algorithm> namespace Aidge { /** @@ -32,13 +32,17 @@ namespace Aidge { * @param output_ Output Tensor. */ template <class I, class O> -void PadImpl1D_cpu_forward_kernel(const Pad_Op<1>::Attrs &attrs, const std::array<DimSize_t, 3> &dims, - const void *input_, void *output_) +void PadImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 2>& beginEndBorders, + const PadBorderType borderType, + const double borderValue, + const std::array<DimSize_t, 3>& dims, + const void *input_, + void *output_) { const I *input = static_cast<const I *>(input_); O *output = static_cast<O *>(output_); - const std::size_t oxSize = dims[2] + std::get<0>(attrs)[0] + std::get<0>(attrs)[1]; + const std::size_t oxSize = dims[2] + beginEndBorders[0] + beginEndBorders[1]; for (std::size_t batch = 0; batch < dims[0]; ++batch) { for (std::size_t ch = 0; ch < dims[1]; ++ch) { @@ -48,22 +52,22 @@ void PadImpl1D_cpu_forward_kernel(const Pad_Op<1>::Attrs &attrs, const std::arra for (unsigned int ox = 0; ox < oxSize; ++ox) { const std::size_t oIndexFull = oIndex + ox; - O outputValue = std::get<2>(attrs); + O outputValue = static_cast<O>(borderValue); - if (std::get<1>(attrs) == PadBorderType::Constant) { - int ix = static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[1]); + if (borderType == PadBorderType::Constant) { + int ix = static_cast<int>(ox) - static_cast<int>(beginEndBorders[1]); if (ix >= 0 && ix < static_cast<int>(dims[2])) { outputValue = input[iIndex + static_cast<std::size_t>(ix)]; } } - else if (std::get<1>(attrs) == PadBorderType::Edge) { - int ix = std::max(0, std::min(static_cast<int>(dims[2]) - 1, static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[1]))); + else if (borderType == PadBorderType::Edge) { + int ix = std::max(0, std::min(static_cast<int>(dims[2]) - 1, static_cast<int>(ox) - static_cast<int>(beginEndBorders[1]))); outputValue = input[iIndex + static_cast<std::size_t>(ix)]; } - else if (std::get<1>(attrs) == PadBorderType::Reflect) { - int ix = static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[1]); + else if (borderType == PadBorderType::Reflect) { + int ix = static_cast<int>(ox) - static_cast<int>(beginEndBorders[1]); if (ix < 0) ix = 0 - ix; @@ -72,8 +76,8 @@ void PadImpl1D_cpu_forward_kernel(const Pad_Op<1>::Attrs &attrs, const std::arra outputValue = input[iIndex + static_cast<std::size_t>(ix)]; } - else if (std::get<1>(attrs) == PadBorderType::Wrap) { - int ix = (static_cast<int>(dims[2]) + static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[1])) % static_cast<int>(dims[2]); + else if (borderType == PadBorderType::Wrap) { + int ix = (static_cast<int>(dims[2]) + static_cast<int>(ox) - static_cast<int>(beginEndBorders[1])) % static_cast<int>(dims[2]); outputValue = input[iIndex + static_cast<std::size_t>(ix)]; } @@ -87,13 +91,13 @@ void PadImpl1D_cpu_forward_kernel(const Pad_Op<1>::Attrs &attrs, const std::arra namespace { static Registrar<PadImpl1DForward_cpu> registrarPadImpl1DForward_cpu_Float32( {DataType::Float32, DataType::Float32}, - Aidge::PadImpl1D_cpu_forward_kernel<float, float>); + PadImpl1D_cpu_forward_kernel<cpptype_t<DataType::Float32>, cpptype_t<DataType::Float32>>); static Registrar<PadImpl1DForward_cpu> registrarPadImpl1DForward_cpu_Int32( {DataType::Int32, DataType::Int32}, - Aidge::PadImpl1D_cpu_forward_kernel<int, int>); + PadImpl1D_cpu_forward_kernel<cpptype_t<DataType::Int32>, cpptype_t<DataType::Int32>>); static Registrar<PadImpl1DForward_cpu> registrarPadImpl1DForward_cpu_Float64( {DataType::Float64, DataType::Float64}, - Aidge::PadImpl1D_cpu_forward_kernel<double, double>); + PadImpl1D_cpu_forward_kernel<cpptype_t<DataType::Float64>, cpptype_t<DataType::Float64>>); } // namespace @@ -107,58 +111,62 @@ static Registrar<PadImpl1DForward_cpu> registrarPadImpl1DForward_cpu_Float64( * @param output_ Output Tensor. */ template <class I, class O> -void PadImpl2D_cpu_forward_kernel(const Pad_Op<2>::Attrs &attrs, const std::array<DimSize_t, 4> &dims, - const void *input_, void *output_) +void PadImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 4>& beginEndBorders, + const PadBorderType borderType, + const double borderValue, + const std::array<DimSize_t, 4> &dims, + const void *input_, + void *output_) { const I *input = static_cast<const I *>(input_); O *output = static_cast<O *>(output_); - const std::size_t oySize = dims[2] + std::get<0>(attrs)[0] + std::get<0>(attrs)[1]; - const std::size_t oxSize = dims[3] + std::get<0>(attrs)[2] + std::get<0>(attrs)[3]; + const std::size_t oySize = dims[2] + beginEndBorders[0] + beginEndBorders[1]; + const std::size_t oxSize = dims[3] + beginEndBorders[2] + beginEndBorders[3]; for (std::size_t batch = 0; batch < dims[0]; ++batch) { for (std::size_t ch = 0; ch < dims[1]; ++ch) { const std::size_t iIndex = (ch + batch*dims[1]) * dims[2] * dims[3]; const std::size_t oIndex = (ch + batch*dims[1]) * oxSize * oySize; - for (unsigned int oy = 0; oy < oySize; ++oy) { - for (unsigned int ox = 0; ox < oxSize; ++ox) { + for (std::uint32_t oy = 0; oy < oySize; ++oy) { + for (std::uint32_t ox = 0; ox < oxSize; ++ox) { const std::size_t oIndexFull = oIndex + ox*oySize + oy; - O outputValue = std::get<2>(attrs); + O outputValue = static_cast<O>(borderValue); - if (std::get<1>(attrs) == PadBorderType::Constant) { - int ix = static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[3]); - int iy = static_cast<int>(oy) - static_cast<int>(std::get<0>(attrs)[1]); + if (borderType == PadBorderType::Constant) { + std::int32_t ix = static_cast<std::int32_t>(ox) - static_cast<std::int32_t>(beginEndBorders[3]); + std::int32_t iy = static_cast<std::int32_t>(oy) - static_cast<std::int32_t>(beginEndBorders[1]); - if (ix >= 0 && ix < static_cast<int>(dims[3]) && iy >= 0 && iy < static_cast<int>(dims[2])) { + if (ix >= 0 && ix < static_cast<std::int32_t>(dims[3]) && iy >= 0 && iy < static_cast<std::int32_t>(dims[2])) { outputValue = input[iIndex + static_cast<std::size_t>(ix)*dims[2] + static_cast<std::size_t>(iy)]; } } - else if (std::get<1>(attrs) == PadBorderType::Edge) { - int ix = std::max(0, std::min(static_cast<int>(dims[3]) - 1, static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[3]))); - int iy = std::max(0, std::min(static_cast<int>(dims[2]) - 1, static_cast<int>(oy) - static_cast<int>(std::get<0>(attrs)[1]))); + else if (borderType == PadBorderType::Edge) { + std::int32_t ix = std::max(0, std::min(static_cast<std::int32_t>(dims[3]) - 1, static_cast<std::int32_t>(ox) - static_cast<std::int32_t>(beginEndBorders[3]))); + std::int32_t iy = std::max(0, std::min(static_cast<std::int32_t>(dims[2]) - 1, static_cast<std::int32_t>(oy) - static_cast<std::int32_t>(beginEndBorders[1]))); outputValue = input[iIndex + static_cast<std::size_t>(ix)*dims[2] + static_cast<std::size_t>(iy)]; } - else if (std::get<1>(attrs) == PadBorderType::Reflect) { - int ix = static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[3]); - int iy = static_cast<int>(oy) - static_cast<int>(std::get<0>(attrs)[1]); + else if (borderType == PadBorderType::Reflect) { + std::int32_t ix = static_cast<std::int32_t>(ox) - static_cast<std::int32_t>(beginEndBorders[3]); + std::int32_t iy = static_cast<std::int32_t>(oy) - static_cast<std::int32_t>(beginEndBorders[1]); if (ix < 0) ix = 0 - ix; if (iy < 0) iy = 0 - iy; - if (ix >= static_cast<int>(dims[3])) - ix = static_cast<int>(dims[3]) - ix; - if (iy >= static_cast<int>(dims[2])) - iy = static_cast<int>(dims[2]) - iy; + if (ix >= static_cast<std::int32_t>(dims[3])) + ix = static_cast<std::int32_t>(dims[3]) - ix; + if (iy >= static_cast<std::int32_t>(dims[2])) + iy = static_cast<std::int32_t>(dims[2]) - iy; outputValue = input[iIndex + static_cast<std::size_t>(ix)*dims[2] + static_cast<std::size_t>(iy)]; } - else if (std::get<1>(attrs) == PadBorderType::Wrap) { - int ix = (static_cast<int>(dims[3]) + static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[3])) % static_cast<int>(dims[3]); - int iy = (static_cast<int>(dims[2]) + static_cast<int>(oy) - static_cast<int>(std::get<0>(attrs)[1])) % static_cast<int>(dims[2]); + else if (borderType == PadBorderType::Wrap) { + std::int32_t ix = (static_cast<std::int32_t>(dims[3]) + static_cast<std::int32_t>(ox) - static_cast<std::int32_t>(beginEndBorders[3])) % static_cast<std::int32_t>(dims[3]); + std::int32_t iy = (static_cast<std::int32_t>(dims[2]) + static_cast<std::int32_t>(oy) - static_cast<std::int32_t>(beginEndBorders[1])) % static_cast<std::int32_t>(dims[2]); outputValue = input[iIndex + static_cast<std::size_t>(ix)*dims[2] + static_cast<std::size_t>(iy)]; } @@ -176,7 +184,7 @@ static Registrar<PadImpl2DForward_cpu> registrarPadImpl2DForward_cpu_Float32( Aidge::PadImpl2D_cpu_forward_kernel<float, float>); static Registrar<PadImpl2DForward_cpu> registrarPadImpl2DForward_cpu_Int32( {DataType::Int32, DataType::Int32}, - Aidge::PadImpl2D_cpu_forward_kernel<int, int>); + Aidge::PadImpl2D_cpu_forward_kernel<std::int32_t, std::int32_t>); static Registrar<PadImpl2DForward_cpu> registrarPadImpl2DForward_cpu_Float64( {DataType::Float64, DataType::Float64}, Aidge::PadImpl2D_cpu_forward_kernel<double, double>); diff --git a/include/aidge/backend/cpu/operator/ReduceMeanImpl.hpp b/include/aidge/backend/cpu/operator/ReduceMeanImpl.hpp index 7355a2bd46f45ab5019a31832001ae3335c1d8e8..8d784c38dc006ea82f040dfe83b4bef05908dd68 100644 --- a/include/aidge/backend/cpu/operator/ReduceMeanImpl.hpp +++ b/include/aidge/backend/cpu/operator/ReduceMeanImpl.hpp @@ -28,12 +28,20 @@ namespace Aidge { // Every DIM class ReduceMeanImplForward_cpu : public Registrable<ReduceMeanImplForward_cpu, - std::tuple<DataType, DataType>, - void(const ReduceMean_Op::Attrs &, const std::vector<DimSize_t>&, const void *, void *)> {}; + std::tuple<DataType, DataType>, + void(const std::vector<std::int32_t>&, + DimSize_t, + const std::vector<DimSize_t>&, + const void *, + void *)> {}; class ReduceMeanImpl1DBackward_cpu : public Registrable<ReduceMeanImpl1DBackward_cpu, - std::tuple<DataType, DataType>, - void(const ReduceMean_Op::Attrs &, const std::vector<DimSize_t>&, const void *, void *)> {}; + std::tuple<DataType, DataType>, + void(const std::vector<std::int32_t>&, + DimSize_t, + const std::vector<DimSize_t>&, + const void *, + void *)> {}; class ReduceMeanImpl_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/ReduceMeanImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ReduceMeanImpl_forward_kernels.hpp index 6533f7b19eac07d429cd8c5ed05ea082457b9e7b..bba355e16958bb1a22bde1d24304d992a658ade8 100644 --- a/include/aidge/backend/cpu/operator/ReduceMeanImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ReduceMeanImpl_forward_kernels.hpp @@ -26,15 +26,15 @@ namespace Aidge { template <class I, class O> -void ReduceMeanImpl_cpu_forward_kernel(const typename ReduceMean_Op::Attrs& attrs, - const std::vector<DimSize_t>& inputDims, - const void* input_, - void* output_) { +void ReduceMeanImpl_cpu_forward_kernel(const std::vector<std::int32_t>& axes, + DimSize_t /*keepDims*/, + const std::vector<DimSize_t>& inputDims, + const void* input_, + void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - const std::vector<std::int32_t>& axes = std::get<0>(attrs); const std::size_t nb_dims = inputDims.size(); const std::size_t totalElements = std::accumulate(inputDims.cbegin(), inputDims.cend(), 1, std::multiplies<std::size_t>()); diff --git a/include/aidge/backend/cpu/operator/ScalingImpl.hpp b/include/aidge/backend/cpu/operator/ScalingImpl.hpp index 66bb42f7fb909ee9b6c91a6321ee3fa32c977626..8590169272818a225fe4299150f873733cdd9cd9 100644 --- a/include/aidge/backend/cpu/operator/ScalingImpl.hpp +++ b/include/aidge/backend/cpu/operator/ScalingImpl.hpp @@ -26,11 +26,23 @@ namespace Aidge { // compute kernel registry for forward and backward class ScalingImplForward_cpu - : public Registrable<ScalingImplForward_cpu, std::tuple<DataType, DataType>, void(const Scaling_Op::Attrs&, std::size_t, const void*, void*)> { -}; + : public Registrable<ScalingImplForward_cpu, + std::tuple<DataType, DataType>, + void(const float, + const std::size_t, + const bool, + std::size_t, + const void*, + void*)> {}; class ScalingImplBackward_cpu - : public Registrable<ScalingImplBackward_cpu, std::tuple<DataType, DataType>, void(const Scaling_Op::Attrs&, std::size_t, const void*, void*)> { -}; + : public Registrable<ScalingImplBackward_cpu, + std::tuple<DataType, DataType>, + void(const float, + const std::size_t, + const bool, + std::size_t, + const void*, + void*)> {}; class ScalingImpl_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp index df8e1a7e7b02a4ad032d6f09fae3ae2cd8a42eff..c654265dd6f650129201037976d89da4b0f39d96 100644 --- a/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp @@ -73,22 +73,21 @@ O saturate(const O value, const std::size_t quantizedNbBits, const bool isOutput } template <class I, class O> -void ScalingImpl_cpu_forward_kernel(const Scaling_Op::Attrs& attrs, - std::size_t inputLenght, - const void* input_, - void* output_) { +void ScalingImpl_cpu_forward_kernel(const float scalingFactor, + const std::size_t quantizedNbBits, + const bool isOutputUnsigned, + std::size_t inputLenght, + const void* input_, + void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - const I& scalingFactor = static_cast<const I&>(std::get<0>(attrs)); - const std::size_t quantizedNbBits = static_cast<std::size_t>(std::get<1>(attrs)); - const bool isOutputUnsigned = static_cast<bool>(std::get<2>(attrs)); for (std::size_t i = 0; i < inputLenght; ++i) { - output[i] = input[i] * scalingFactor; + output[i] = static_cast<O>(input[i] * static_cast<I>(scalingFactor)); if(quantizedNbBits > 0) { - output[i] = saturate(std::round(output[i]), quantizedNbBits, isOutputUnsigned); + output[i] = saturate(std::round(output[i]), quantizedNbBits, isOutputUnsigned); } } } diff --git a/include/aidge/backend/cpu/operator/SliceImpl.hpp b/include/aidge/backend/cpu/operator/SliceImpl.hpp index 7370eb5ee0a65ce9191a450271f816f873ac0737..61aed1553bfbd2e67fc837ec6ea8d80b26ef3558 100644 --- a/include/aidge/backend/cpu/operator/SliceImpl.hpp +++ b/include/aidge/backend/cpu/operator/SliceImpl.hpp @@ -9,28 +9,43 @@ * ********************************************************************************/ -#ifndef __AIDGE_CPU_OPERATOR_SLICEIMPL_H__ -#define __AIDGE_CPU_OPERATOR_SLICEIMPL_H__ +#ifndef AIDGE_CPU_OPERATOR_SLICEIMPL_H__ +#define AIDGE_CPU_OPERATOR_SLICEIMPL_H__ + +#include <memory> +#include <vector> +#include <array> #include "aidge/backend/OperatorImpl.hpp" #include "aidge/operator/Slice.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" #include "aidge/backend/cpu/data/GetCPUPtr.h" -#include <memory> -#include <vector> -#include <array> namespace Aidge { // class Slice_Op; // compute kernel registry for forward and backward class SliceImplForward_cpu - : public Registrable<SliceImplForward_cpu, std::tuple<DataType, DataType>, void(const Slice_Op::Attrs&, const std::vector<DimSize_t>&, const void*, void*)> { -}; + : public Registrable<SliceImplForward_cpu, + std::tuple<DataType, DataType>, + void(const std::vector<std::int64_t>&, + const std::vector<std::int64_t>&, + const std::vector<std::int8_t>&, + const std::vector<std::int64_t>&, + const std::vector<DimSize_t>&, + const void*, + void*)> {}; class SliceImplBackward_cpu - : public Registrable<SliceImplBackward_cpu, std::tuple<DataType, DataType>, void(const Slice_Op::Attrs&, const std::vector<DimSize_t>&, const void*, void*)> { -}; + : public Registrable<SliceImplBackward_cpu, + std::tuple<DataType, DataType>, + void(const std::vector<std::int64_t>&, + const std::vector<std::int64_t>&, + const std::vector<std::int8_t>&, + const std::vector<std::int64_t>&, + const std::vector<DimSize_t>&, + const void*, + void*)> {}; class SliceImpl_cpu : public OperatorImpl { public: diff --git a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp index d3a6ef32bdd269e08fa8320c554aa251b54bb80b..31e409369cc640bbda9f54c54652af7f72b509b6 100644 --- a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp @@ -23,7 +23,14 @@ namespace Aidge { template<class I, class O> -void SliceImpl_cpu_forward_kernel(const Slice_Op::Attrs &attrs, const std::vector<DimSize_t>&inputDims, const void *input_, void *output_){ +void SliceImpl_cpu_forward_kernel(const std::vector<std::int64_t>& starts, + const std::vector<std::int64_t>& ends, + const std::vector<std::int8_t>& axes, + const std::vector<std::int64_t>& steps, + const std::vector<DimSize_t>& inputDims, + const void* input_, + void* output_) +{ const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); @@ -32,19 +39,19 @@ void SliceImpl_cpu_forward_kernel(const Slice_Op::Attrs &attrs, const std::vecto DimSize_t totalSize = std::accumulate(inputDims.cbegin(), inputDims.cend(), std::size_t(1), std::multiplies<std::size_t>()); const I* inputAccumulation = input; I* outputAccumulation = nullptr; - const std::size_t nbAxes = std::get<0>(attrs).size(); + const std::size_t nbAxes = starts.size(); for (std::size_t i = 0; i < nbAxes; ++i) { - const DimIdx_t axis = std::get<2>(attrs)[i] >= 0 ? - static_cast<DimIdx_t>(std::get<2>(attrs)[i]) : - static_cast<DimIdx_t>(std::get<2>(attrs)[i] + static_cast<DimIdx_t>(inputDims.size())); - const DimSize_t start = std::min(std::get<0>(attrs)[i] >= 0 ? - static_cast<DimSize_t>(std::get<0>(attrs)[i]) : - static_cast<DimSize_t>(std::get<0>(attrs)[i] + static_cast<std::int64_t>(inputDims[axis])), + const DimIdx_t axis = axes[i] >= 0 ? + static_cast<DimIdx_t>(axes[i]) : + static_cast<DimIdx_t>(axes[i] + static_cast<DimIdx_t>(inputDims.size())); + const DimSize_t start = std::min(starts[i] >= 0 ? + static_cast<DimSize_t>(starts[i]) : + static_cast<DimSize_t>(starts[i] + static_cast<std::int64_t>(inputDims[axis])), dims[axis]-1); - const DimSize_t end = std::get<1>(attrs)[i] >= 0 ? - static_cast<DimSize_t>(std::get<1>(attrs)[i]) : - static_cast<DimSize_t>(std::get<1>(attrs)[i] + static_cast<std::int64_t>(inputDims[axis])); - const std::int64_t step = std::get<3>(attrs)[i]; + const DimSize_t end = ends[i] >= 0 ? + static_cast<DimSize_t>(ends[i]) : + static_cast<DimSize_t>(ends[i] + static_cast<std::int64_t>(inputDims[axis])); + const std::int64_t step = steps[i]; const std::size_t sliceSize = static_cast<std::size_t>(std::ceil((static_cast<float>(end) - static_cast<float>(start)) / static_cast<float>(step))); @@ -67,12 +74,12 @@ void SliceImpl_cpu_forward_kernel(const Slice_Op::Attrs &attrs, const std::vecto totalSize /= dims[axis]; totalSize *= sliceSize; dims[axis] = sliceSize; - + if (inputAccumulation != input) { delete[] inputAccumulation; } inputAccumulation = outputAccumulation; - + } // Copy elements from inputAccumulation to output while dividing by divisor std::copy_n(inputAccumulation, totalSize, output); diff --git a/src/operator/AvgPoolingImpl.cpp b/src/operator/AvgPoolingImpl.cpp index 8ba6751bf4068a69ed07e362924f59d0f4aca6c5..feaa7e67a8d0bc726462aed99e557493d3b8d0c6 100644 --- a/src/operator/AvgPoolingImpl.cpp +++ b/src/operator/AvgPoolingImpl.cpp @@ -9,17 +9,17 @@ * ********************************************************************************/ -#include <cassert> +#include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp" + +#include <array> #include <numeric> -#include <thread> #include <vector> -#include "aidge/utils/Types.h" #include "aidge/backend/cpu/data/GetCPUPtr.h" -#include "aidge/operator/AvgPooling.hpp" - -#include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp" #include "aidge/backend/cpu/operator/AvgPoolingImpl_forward_kernels.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/AvgPooling.hpp" +#include "aidge/utils/Types.h" Aidge::Elts_t Aidge::AvgPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const { // this implementation can be in-place @@ -27,15 +27,18 @@ Aidge::Elts_t Aidge::AvgPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*in } void Aidge::AvgPoolingImpl2D_cpu::forward() { - assert(mOp.getRawInput(0) && "missing input #0"); + const auto& op_ = dynamic_cast<const AvgPooling_Op<2>&>(mOp); + assert(op_.getInput(0) && "missing input #0"); // Find the correct kernel type - auto kernelFunc = - Registrar<AvgPoolingImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); + auto kernelFunc = Registrar<AvgPoolingImpl2DForward_cpu>::create( + {op_.getInput(0)->dataType(), + op_.getOutput(0)->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const AvgPooling_Op<2>&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), - getCPUPtr(mOp.getRawInput(0)), - getCPUPtr(mOp.getRawOutput(0))); + kernelFunc(op_.strideDims(), + op_.kernelDims(), + op_.getInput(0)->template dims<4>(), + getCPUPtr(op_.getInput(0)), + getCPUPtr(op_.getOutput(0))); } diff --git a/src/operator/BatchNormImpl.cpp b/src/operator/BatchNormImpl.cpp index 96179d11850624f831333c9a4badaddf2221ecff..3046eea9bd241732daf39cce1783b5ee50de01c7 100644 --- a/src/operator/BatchNormImpl.cpp +++ b/src/operator/BatchNormImpl.cpp @@ -9,7 +9,9 @@ * ********************************************************************************/ -#include <cassert> +#include "aidge/backend/cpu/operator/BatchNormImpl.hpp" + + #include <numeric> // std::accumulate #include <vector> @@ -17,7 +19,6 @@ #include "aidge/backend/cpu/data/GetCPUPtr.h" #include "aidge/operator/BatchNorm.hpp" -#include "aidge/backend/cpu/operator/BatchNormImpl.hpp" #include "aidge/backend/cpu/operator/BatchNormImpl_forward_kernels.hpp" Aidge::Elts_t Aidge::BatchNormImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const { @@ -26,27 +27,29 @@ Aidge::Elts_t Aidge::BatchNormImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inp } void Aidge::BatchNormImpl2D_cpu::forward() { - assert(mOp.getRawInput(0) && "missing input #0"); - assert(mOp.getRawInput(1) && "missing input #1"); - assert(mOp.getRawInput(2) && "missing input #2"); - assert(mOp.getRawInput(3) && "missing input #3"); - assert(mOp.getRawInput(4) && "missing input #4"); + const auto& op_ = dynamic_cast<const BatchNorm_Op<2>&>(mOp); + AIDGE_ASSERT(op_.getInput(0), "missing input #0 for BatchNorm Operator"); + AIDGE_ASSERT(op_.getInput(1), "missing input #1 for BatchNorm Operator"); + AIDGE_ASSERT(op_.getInput(2), "missing input #2 for BatchNorm Operator"); + AIDGE_ASSERT(op_.getInput(3), "missing input #3 for BatchNorm Operator"); + AIDGE_ASSERT(op_.getInput(4), "missing input #4 for BatchNorm Operator"); - assert(std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->nbDims() == 4); + AIDGE_ASSERT(op_.getOutput(0)->nbDims() == 4, ""); // Find the correct kernel type auto kernelFunc = - Registrar<BatchNormImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), - std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); + Registrar<BatchNormImpl2DForward_cpu>::create({op_.getInput(0)->dataType(), + op_.getInput(1)->dataType(), + op_.getOutput(0)->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const BatchNorm_Op<2>&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), - getCPUPtr(mOp.getRawInput(0)), - getCPUPtr(mOp.getRawInput(1)), - getCPUPtr(mOp.getRawInput(2)), - getCPUPtr(mOp.getRawInput(3)), - getCPUPtr(mOp.getRawInput(4)), - getCPUPtr(mOp.getRawOutput(0)), - true); + kernelFunc(op_.epsilon(), + op_.momentum(), + op_.getInput(0)->template dims<4>(), + getCPUPtr(op_.getRawInput(0)), + getCPUPtr(op_.getRawInput(1)), + getCPUPtr(op_.getRawInput(2)), + getCPUPtr(op_.getRawInput(3)), + getCPUPtr(op_.getRawInput(4)), + getCPUPtr(op_.getRawOutput(0)), + true); } diff --git a/src/operator/ConvDepthWiseImpl.cpp b/src/operator/ConvDepthWiseImpl.cpp index 11e50aaa9b25ad6a14aeaedc6ae5d936edb88893..591e8a0637d1e52c75193ac1750a210a08815ccc 100644 --- a/src/operator/ConvDepthWiseImpl.cpp +++ b/src/operator/ConvDepthWiseImpl.cpp @@ -9,38 +9,38 @@ * ********************************************************************************/ -#include <cassert> -#include <chrono> // std::chrono::milliseconds -#include <numeric> // std::accumulate -#include <thread> // std::this_thread::sleep_for +#include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp" + +#include <memory> #include <vector> -#include "aidge/utils/Types.h" #include "aidge/backend/cpu/data/GetCPUPtr.h" +#include "aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp" +#include "aidge/data/Tensor.hpp" #include "aidge/operator/ConvDepthWise.hpp" +#include "aidge/utils/Log.hpp" +#include "aidge/utils/Types.h" -#include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp" -#include "aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp" -Aidge::Elts_t Aidge::ConvDepthWiseImpl1D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const { +Aidge::Elts_t Aidge::ConvDepthWiseImpl1D_cpu::getNbRequiredProtected(Aidge::IOIndex_t /*inputIdx*/) const { // this implementation can be in-place return Elts_t::DataElts(0); } void Aidge::ConvDepthWiseImpl1D_cpu::forward() { - const auto& opTensor = static_cast<const OperatorTensor&>(mOp); + const auto& op_ = dynamic_cast<const ConvDepthWise_Op<1>&>(mOp); - assert(mOp.getRawInput(0) && "missing input #0"); - assert(mOp.getRawInput(1) && "missing input #1"); + AIDGE_ASSERT(op_.getInput(0), "missing input #0 in ConvDepthWise Operator"); + AIDGE_ASSERT(op_.getInput(1), "missing input #1 in ConvDepthWise Operator"); - assert((std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims() == 3) && "support for 3-dimensions tensors only"); + AIDGE_ASSERT((op_.getInput(0)->nbDims() == 3), "support for 4-dimensions tensors only"); // Find the correct kernel type - const auto outputDataType = opTensor.getOutput(0)->dataType(); + const auto outputDataType = op_.getOutput(0)->dataType(); const Registrar<ConvDepthWiseImpl1DForward_cpu>::registrar_key registrarKey = { - opTensor.getInput(0)->dataType(), - opTensor.getInput(1)->dataType(), - ((opTensor.getInput(2)) ? opTensor.getInput(2)->dataType() : opTensor.getInput(1)->dataType()), + op_.getInput(0)->dataType(), + op_.getInput(1)->dataType(), + ((op_.getInput(2)) ? op_.getInput(2)->dataType() : op_.getInput(1)->dataType()), outputDataType}; Registrar<ConvDepthWiseImpl1DForward_cpu>::registrar_type kernelFunc; @@ -59,16 +59,18 @@ void Aidge::ConvDepthWiseImpl1D_cpu::forward() { // call to forward(). We might put the following shared_ptr as members of // this class to avoid that. std::shared_ptr<Tensor> input0Fallback, input1Fallback, input2Fallback; - const auto& input0 = opTensor.getInput(0)->refCastFrom(input0Fallback, *opTensor.getOutput(0)); - const auto& input1 = opTensor.getInput(1)->refCastFrom(input1Fallback, *opTensor.getOutput(0)); - const auto& input2 = (opTensor.getInput(2)) ? opTensor.getInput(2)->refCastFrom(input2Fallback, *opTensor.getOutput(0)) : Tensor(); + const auto& input0 = op_.getInput(0)->refCastFrom(input0Fallback, *op_.getOutput(0)); + const auto& input1 = op_.getInput(1)->refCastFrom(input1Fallback, *op_.getOutput(0)); + const auto& input2 = (op_.getInput(2)) ? op_.getInput(2)->refCastFrom(input2Fallback, *op_.getOutput(0)) : Tensor(); // Call kernel - kernelFunc(dynamic_cast<const ConvDepthWise_Op<1>&>(mOp).getStaticAttributes(), // Conv attributes - opTensor.getInput(0)->template dims<3>(), // input dimensions + kernelFunc(op_.strideDims(), + op_.dilationDims(), + op_.kernelDims(), // Conv attributes + op_.getInput(0)->template dims<3>(), // input dimensions input0.getImpl()->rawPtr(), // input input1.getImpl()->rawPtr(), // weight - (opTensor.getInput(2)) ? input2.getImpl()->rawPtr() : nullptr, // bias + (op_.getInput(2)) ? input2.getImpl()->rawPtr() : nullptr, // bias getCPUPtr(mOp.getRawOutput(0)) // output ); } @@ -79,47 +81,37 @@ Aidge::Elts_t Aidge::ConvDepthWiseImpl2D_cpu::getNbRequiredProtected(IOIndex_t / } void Aidge::ConvDepthWiseImpl2D_cpu::forward() { - const auto& opTensor = static_cast<const OperatorTensor&>(mOp); + const auto& op_ = dynamic_cast<const ConvDepthWise_Op<2>&>(mOp); - assert(mOp.getRawInput(0) && "missing input #0"); - assert(mOp.getRawInput(1) && "missing input #1"); + AIDGE_ASSERT(op_.getInput(0), "missing input #0 in ConvDepthWise Operator"); + AIDGE_ASSERT(op_.getInput(1), "missing input #1 in ConvDepthWise Operator"); + AIDGE_ASSERT(op_.getInput(2), "missing input #2 in ConvDepthWise Operator"); - assert((std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims() == 4) && "support for 3-dimensions tensors only"); + AIDGE_ASSERT((op_.getInput(0)->nbDims() == 4), "support for 4-dimensions tensors only"); // Find the correct kernel type - const auto outputDataType = opTensor.getOutput(0)->dataType(); - const Registrar<ConvDepthWiseImpl2DForward_cpu>::registrar_key registrarKey = { - opTensor.getInput(0)->dataType(), - opTensor.getInput(1)->dataType(), - ((opTensor.getInput(2)) ? opTensor.getInput(2)->dataType() : opTensor.getInput(1)->dataType()), - outputDataType}; - - Registrar<ConvDepthWiseImpl2DForward_cpu>::registrar_type kernelFunc; - if (Registrar<ConvDepthWiseImpl2DForward_cpu>::exists(registrarKey)) { - // One exists with the right inputs/output types - kernelFunc = Registrar<ConvDepthWiseImpl2DForward_cpu>::create(registrarKey); - } - else { - // Otherwise, fallback to the kernel with all types matching output type - kernelFunc = Registrar<ConvDepthWiseImpl2DForward_cpu>::create({ - outputDataType, outputDataType, outputDataType, outputDataType}); - } + auto kernelFunc = Registrar<ConvDepthWiseImpl2DForward_cpu>::create( + {op_.getInput(0)->dataType(), + op_.getInput(1)->dataType(), + op_.getInput(2)->dataType(), + op_.getOutput(0)->dataType()}); - // Convert input data (no overhead if not needed!) + // Convert input data (no overhead if not needed!) // TODO: right now, if needed, memory will be allocated/deallocated at each // call to forward(). We might put the following shared_ptr as members of // this class to avoid that. std::shared_ptr<Tensor> input0Fallback, input1Fallback, input2Fallback; - const auto& input0 = opTensor.getInput(0)->refCastFrom(input0Fallback, *opTensor.getOutput(0)); - const auto& input1 = opTensor.getInput(1)->refCastFrom(input1Fallback, *opTensor.getOutput(0)); - const auto& input2 = (opTensor.getInput(2)) ? opTensor.getInput(2)->refCastFrom(input2Fallback, *opTensor.getOutput(0)) : Tensor(); + const auto& input0 = op_.getInput(0)->refCastFrom(input0Fallback, *op_.getOutput(0)); + const auto& input1 = op_.getInput(1)->refCastFrom(input1Fallback, *op_.getOutput(0)); + const auto& input2 = op_.getInput(2) ? op_.getInput(2)->refCastFrom(input2Fallback, *op_.getOutput(0)) : Tensor(); // Call kernel - kernelFunc(dynamic_cast<const ConvDepthWise_Op<2>&>(mOp).getStaticAttributes(), // Conv attributes - opTensor.getInput(0)->template dims<4>(), // input dimensions - input0.getImpl()->rawPtr(), // input - input1.getImpl()->rawPtr(), // weight - (opTensor.getInput(2)) ? input2.getImpl()->rawPtr() : nullptr, // bias - getCPUPtr(mOp.getRawOutput(0)) // output - ); + kernelFunc(op_.strideDims(), + op_.dilationDims(), + op_.kernelDims(), + op_.getInput(0)->template dims<4>(), + input0.getImpl()->rawPtr(), + input1.getImpl()->rawPtr(), + op_.getInput(2) ? input2.getImpl()->rawPtr() : nullptr, + getCPUPtr(op_.getRawOutput(0))); } diff --git a/src/operator/ConvImpl.cpp b/src/operator/ConvImpl.cpp index e522aac17ef6c1ffaa0778c49ac053db562f4def..0be31befe2019d70b628db878443f14b1d622f1c 100644 --- a/src/operator/ConvImpl.cpp +++ b/src/operator/ConvImpl.cpp @@ -28,18 +28,18 @@ Aidge::Elts_t Aidge::ConvImpl1D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx } void Aidge::ConvImpl1D_cpu::forward() { - const auto& opTensor = static_cast<const OperatorTensor&>(mOp); + const auto& op_ = static_cast<const Conv_Op<1>&>(mOp); // FIXME: uncomment the following code once memory handling will work - assert(mOp.getRawInput(0) && "missing input #0"); - assert(mOp.getRawInput(1) && "missing input #1"); +AIDGE_ASSERT(op_.getInput(0), "missing input #0 in Conv Operator."); + AIDGE_ASSERT(op_.getInput(1), "missing input #1 in Conv Operator."); // Find the correct kernel type - const auto outputDataType = opTensor.getOutput(0)->dataType(); + const auto outputDataType = op_.getOutput(0)->dataType(); const Registrar<ConvImpl1DForward_cpu>::registrar_key registrarKey = { - opTensor.getInput(0)->dataType(), - opTensor.getInput(1)->dataType(), - ((opTensor.getInput(2)) ? opTensor.getInput(2)->dataType() : opTensor.getInput(1)->dataType()), + op_.getInput(0)->dataType(), + op_.getInput(1)->dataType(), + (op_.getInput(2) ? op_.getInput(2)->dataType() : op_.getInput(1)->dataType()), outputDataType}; Registrar<ConvImpl1DForward_cpu>::registrar_type kernelFunc; @@ -58,18 +58,20 @@ void Aidge::ConvImpl1D_cpu::forward() { // call to forward(). We might put the following shared_ptr as members of // this class to avoid that. std::shared_ptr<Tensor> input0Fallback, input1Fallback, input2Fallback; - const auto& input0 = opTensor.getInput(0)->refCastFrom(input0Fallback, *opTensor.getOutput(0)); - const auto& input1 = opTensor.getInput(1)->refCastFrom(input1Fallback, *opTensor.getOutput(0)); - const auto& input2 = (opTensor.getInput(2)) ? opTensor.getInput(2)->refCastFrom(input2Fallback, *opTensor.getOutput(0)) : Tensor(); + const auto& input0 = op_.getInput(0)->refCastFrom(input0Fallback, *op_.getOutput(0)); + const auto& input1 = op_.getInput(1)->refCastFrom(input1Fallback, *op_.getOutput(0)); + const auto& input2 = (op_.getInput(2)) ? op_.getInput(2)->refCastFrom(input2Fallback, *op_.getOutput(0)) : Tensor(); // Call kernel - kernelFunc(dynamic_cast<const Conv_Op<1>&>(mOp).getStaticAttributes(), // Conv attributes - opTensor.getInput(0)->template dims<3>(), // input dimensions - dynamic_cast<const Conv_Op<1>&>(mOp).outChannels(), // outChannels - input0.getImpl()->rawPtr(), // input - input1.getImpl()->rawPtr(), // weight - (opTensor.getInput(2)) ? input2.getImpl()->rawPtr() : nullptr, // bias - getCPUPtr(mOp.getRawOutput(0)) // output + kernelFunc(op_.strideDims(), + op_.dilationDims(), + op_.kernelDims(), + op_.getInput(0)->template dims<3>(), // input dimensions + dynamic_cast<const Conv_Op<2>&>(mOp).outChannels(), // outChannels + input0.getImpl()->rawPtr(), // input + input1.getImpl()->rawPtr(), // weight + op_.getInput(2) ? input2.getImpl()->rawPtr() : nullptr, // bias + getCPUPtr(mOp.getRawOutput(0)) // output ); } @@ -79,18 +81,18 @@ Aidge::Elts_t Aidge::ConvImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx } void Aidge::ConvImpl2D_cpu::forward() { - const auto& opTensor = static_cast<const OperatorTensor&>(mOp); + const auto& op_ = dynamic_cast<const Conv_Op<2>&>(mOp); // FIXME: uncomment the following code once memory handling will work - assert(mOp.getRawInput(0) && "missing input #0"); - assert(mOp.getRawInput(1) && "missing input #1"); + AIDGE_ASSERT(op_.getInput(0), "missing input #0 in Conv Operator."); + AIDGE_ASSERT(op_.getInput(1), "missing input #1 in Conv Operator."); // Find the correct kernel type - const auto outputDataType = opTensor.getOutput(0)->dataType(); + const auto outputDataType = op_.getOutput(0)->dataType(); const Registrar<ConvImpl2DForward_cpu>::registrar_key registrarKey = { - opTensor.getInput(0)->dataType(), - opTensor.getInput(1)->dataType(), - ((opTensor.getInput(2)) ? opTensor.getInput(2)->dataType() : opTensor.getInput(1)->dataType()), + op_.getInput(0)->dataType(), + op_.getInput(1)->dataType(), + (op_.getInput(2) ? op_.getInput(2)->dataType() : op_.getInput(1)->dataType()), outputDataType}; Registrar<ConvImpl2DForward_cpu>::registrar_type kernelFunc; @@ -109,17 +111,19 @@ void Aidge::ConvImpl2D_cpu::forward() { // call to forward(). We might put the following shared_ptr as members of // this class to avoid that. std::shared_ptr<Tensor> input0Fallback, input1Fallback, input2Fallback; - const auto& input0 = opTensor.getInput(0)->refCastFrom(input0Fallback, *opTensor.getOutput(0)); - const auto& input1 = opTensor.getInput(1)->refCastFrom(input1Fallback, *opTensor.getOutput(0)); - const auto& input2 = (opTensor.getInput(2)) ? opTensor.getInput(2)->refCastFrom(input2Fallback, *opTensor.getOutput(0)) : Tensor(); + const auto& input0 = op_.getInput(0)->refCastFrom(input0Fallback, *op_.getOutput(0)); + const auto& input1 = op_.getInput(1)->refCastFrom(input1Fallback, *op_.getOutput(0)); + const auto& input2 = (op_.getInput(2)) ? op_.getInput(2)->refCastFrom(input2Fallback, *op_.getOutput(0)) : Tensor(); // Call kernel - kernelFunc(dynamic_cast<const Conv_Op<2>&>(mOp).getStaticAttributes(), // Conv attributes - opTensor.getInput(0)->template dims<4>(), // input dimensions - dynamic_cast<const Conv_Op<2>&>(mOp).outChannels(), // outChannels - input0.getImpl()->rawPtr(), // input - input1.getImpl()->rawPtr(), // weight - (opTensor.getInput(2)) ? input2.getImpl()->rawPtr() : nullptr, // bias - getCPUPtr(mOp.getRawOutput(0)) // output + kernelFunc(op_.strideDims(), + op_.dilationDims(), + op_.kernelDims(), + op_.getInput(0)->template dims<4>(), // input dimensions + dynamic_cast<const Conv_Op<2>&>(mOp).outChannels(), // outChannels + input0.getImpl()->rawPtr(), // input + input1.getImpl()->rawPtr(), // weight + op_.getInput(2) ? input2.getImpl()->rawPtr() : nullptr, // bias + getCPUPtr(mOp.getRawOutput(0)) // output ); } diff --git a/src/operator/LeakyReLUImpl.cpp b/src/operator/LeakyReLUImpl.cpp index 340af3eeaf370988f9b12d8535812c938e47078a..9d4f2a7edcdf263751ec1d9cea10cd4d60055610 100644 --- a/src/operator/LeakyReLUImpl.cpp +++ b/src/operator/LeakyReLUImpl.cpp @@ -9,18 +9,19 @@ * ********************************************************************************/ -#include <cassert> +#include "aidge/backend/cpu/operator/LeakyReLUImpl.hpp" + #include <vector> +#include "aidge/backend/cpu/data/GetCPUPtr.h" +#include "aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp" +#include "aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp" #include "aidge/data/Tensor.hpp" #include "aidge/operator/LeakyReLU.hpp" +#include "aidge/utils/Log.hpp" #include "aidge/utils/Types.h" #include "aidge/utils/Registrar.hpp" -#include "aidge/backend/cpu/data/GetCPUPtr.h" -#include "aidge/backend/cpu/operator/LeakyReLUImpl.hpp" -#include "aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp" -#include "aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp" Aidge::Elts_t Aidge::LeakyReLUImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { // this implementation can be in-place @@ -29,6 +30,7 @@ Aidge::Elts_t Aidge::LeakyReLUImpl_cpu::getNbRequiredProtected(const Aidge::IOIn void Aidge::LeakyReLUImpl_cpu::forward() { const LeakyReLU_Op& op_ = dynamic_cast<const LeakyReLU_Op&>(mOp); + std::shared_ptr<Tensor> in0 = op_.getInput(0); std::shared_ptr<Tensor> out0 = op_.getOutput(0); AIDGE_ASSERT(in0, "missing input #0"); @@ -39,7 +41,7 @@ void Aidge::LeakyReLUImpl_cpu::forward() { out0->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const LeakyReLU_Op&>(mOp).getStaticAttributes(), + kernelFunc(op_.negativeSlope(), in0->size(), getCPUPtr(mOp.getRawInput(0)), getCPUPtr(mOp.getRawOutput(0))); @@ -58,7 +60,7 @@ void Aidge::LeakyReLUImpl_cpu::backward() { out0->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const LeakyReLU_Op&>(mOp).getStaticAttributes(), + kernelFunc(op_.negativeSlope(), in0->size(), getCPUPtr(in0), getCPUPtr(out0)); diff --git a/src/operator/MaxPoolingImpl.cpp b/src/operator/MaxPoolingImpl.cpp index 94591eaa9848b24aeb7afa1e8b6b87a3e6e2b45f..2e6d67abbdd6776a1f75449a0f4562143cbaae87 100644 --- a/src/operator/MaxPoolingImpl.cpp +++ b/src/operator/MaxPoolingImpl.cpp @@ -9,17 +9,16 @@ * ********************************************************************************/ -#include <cassert> -#include <numeric> -#include <thread> +#include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp" + #include <vector> -#include "aidge/utils/Types.h" #include "aidge/backend/cpu/data/GetCPUPtr.h" +#include "aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp" #include "aidge/operator/MaxPooling.hpp" +#include "aidge/utils/Log.hpp" +#include "aidge/utils/Types.h" -#include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp" -#include "aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp" Aidge::Elts_t Aidge::MaxPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const { // this implementation can be in-place @@ -27,15 +26,20 @@ Aidge::Elts_t Aidge::MaxPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*in } void Aidge::MaxPoolingImpl2D_cpu::forward() { - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + const auto& op_ = dynamic_cast<const MaxPooling_Op<2>&>(mOp); + AIDGE_ASSERT(op_.getInput(0), "missing input #0 in MaxPooling Operator."); // Find the correct kernel type - auto kernelFunc = - Registrar<MaxPoolingImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); + auto kernelFunc = Registrar<MaxPoolingImpl2DForward_cpu>::create({ + op_.getInput(0)->dataType(), + op_.getOutput(0)->dataType() + }); // Call kernel - kernelFunc(dynamic_cast<const MaxPooling_Op<2>&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), - getCPUPtr(mOp.getRawInput(0)), - getCPUPtr(mOp.getRawOutput(0))); + kernelFunc(op_.strideDims(), + op_.kernelDims(), + op_.ceilMode(), + op_.getInput(0)->template dims<4>(), + getCPUPtr(mOp.getRawInput(0)), + getCPUPtr(mOp.getRawOutput(0))); } diff --git a/src/operator/PadImpl.cpp b/src/operator/PadImpl.cpp index f7ac36428536b88da73736cc7f3898bb16578b10..b4b52d6be855b6a1f8c0a71a6a9169ee9690f34c 100644 --- a/src/operator/PadImpl.cpp +++ b/src/operator/PadImpl.cpp @@ -9,10 +9,6 @@ * ********************************************************************************/ -#include <cassert> -#include <chrono> // std::chrono::milliseconds -#include <numeric> // std::accumulate -#include <thread> // std::this_thread::sleep_for #include <vector> #include "aidge/utils/Types.h" @@ -22,10 +18,12 @@ #include "aidge/backend/cpu/operator/PadImpl.hpp" #include "aidge/backend/cpu/operator/PadImpl_forward_kernels.hpp" -Aidge::Elts_t Aidge::PadImpl1D_cpu::getNbRequiredProtected(IOIndex_t inputIdx) const { - assert(inputIdx == 0 && "operator has only one input"); +Aidge::Elts_t Aidge::PadImpl1D_cpu::getNbRequiredProtected(Aidge::IOIndex_t inputIdx) const { + AIDGE_ASSERT(inputIdx == 0, "input index out of range." + "{} Operator has only one input", mOp.type()); (void) inputIdx; + // Padding cannot be in-place! // We must ensure that we do not override data that has not been consummed yet. const auto inputSize = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(); @@ -34,21 +32,26 @@ Aidge::Elts_t Aidge::PadImpl1D_cpu::getNbRequiredProtected(IOIndex_t inputIdx) c } void Aidge::PadImpl1D_cpu::forward() { - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + const auto& op_ = dynamic_cast<const Pad_Op<1>&>(mOp); + AIDGE_ASSERT(op_.getInput(0), "missing input #0 in Pad Operator."); // Find the correct kernel type - auto kernelFunc = - Registrar<PadImpl1DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); + auto kernelFunc = Registrar<PadImpl1DForward_cpu>::create({ + op_.getInput(0)->dataType(), + op_.getOutput(0)->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const Pad_Op<1>&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<3>(), - getCPUPtr(mOp.getRawInput(0)), - getCPUPtr(mOp.getRawOutput(0))); + kernelFunc(op_.beginEndBorders(), + op_.borderType(), + op_.borderValue(), + op_.getInput(0)->template dims<3>(), + getCPUPtr(mOp.getRawInput(0)), + getCPUPtr(mOp.getRawOutput(0))); } -Aidge::Elts_t Aidge::PadImpl2D_cpu::getNbRequiredProtected(IOIndex_t inputIdx) const { - assert(inputIdx == 0 && "operator has only one input"); +Aidge::Elts_t Aidge::PadImpl2D_cpu::getNbRequiredProtected(Aidge::IOIndex_t inputIdx) const { + AIDGE_ASSERT(inputIdx == 0, "input index out of range." + "{} Operator has only one input", mOp.type()); (void) inputIdx; // Padding cannot be in-place! @@ -59,15 +62,19 @@ Aidge::Elts_t Aidge::PadImpl2D_cpu::getNbRequiredProtected(IOIndex_t inputIdx) c } void Aidge::PadImpl2D_cpu::forward() { - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + const auto& op_ = dynamic_cast<const Pad_Op<2>&>(mOp); + AIDGE_ASSERT(op_.getInput(0), "missing input #0 in Pad Operator."); // Find the correct kernel type - auto kernelFunc = - Registrar<PadImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); + auto kernelFunc = Registrar<PadImpl2DForward_cpu>::create({ + op_.getInput(0)->dataType(), + op_.getOutput(0)->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const Pad_Op<2>&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), - getCPUPtr(mOp.getRawInput(0)), - getCPUPtr(mOp.getRawOutput(0))); + kernelFunc(op_.beginEndBorders(), + op_.borderType(), + op_.borderValue(), + op_.getInput(0)->template dims<4>(), + getCPUPtr(mOp.getRawInput(0)), + getCPUPtr(mOp.getRawOutput(0))); } diff --git a/src/operator/ReduceMeanImpl.cpp b/src/operator/ReduceMeanImpl.cpp index a9f17a28a2a47ec7bc50820d587e8d0f359d2bb3..b4cd8ffa9b46aaa1c1d7a2eca947ed0254947fef 100644 --- a/src/operator/ReduceMeanImpl.cpp +++ b/src/operator/ReduceMeanImpl.cpp @@ -26,10 +26,11 @@ void Aidge::ReduceMeanImpl_cpu::forward() { op_.getOutput(0)->dataType()}); // Call kernel - kernelFunc(op_.getStaticAttributes(), - op_.getInput(0)->dims(), - op_.getInput(0)->getImpl()->rawPtr(), - op_.getOutput(0)->getImpl()->rawPtr()); + kernelFunc(op_.axes(), + op_.keepDims(), + op_.getInput(0)->dims(), + op_.getInput(0)->getImpl()->rawPtr(), + op_.getOutput(0)->getImpl()->rawPtr()); } // void Aidge::ReduceMeanImpl1D_cpu::forward() { diff --git a/src/operator/ScalingImpl.cpp b/src/operator/ScalingImpl.cpp index d0b58702c73f01fb62114d335f5c2342908542ea..db4670836e702f536243aadec36c5ba85b2344c8 100644 --- a/src/operator/ScalingImpl.cpp +++ b/src/operator/ScalingImpl.cpp @@ -12,6 +12,7 @@ #include <cassert> #include <numeric> // std::accumulate #include <functional> // std::multiplies +#include <vector> #include "aidge/operator/Scaling.hpp" @@ -19,7 +20,6 @@ #include "aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp" #include "aidge/utils/Types.h" #include "aidge/backend/cpu/data/GetCPUPtr.h" -#include <vector> Aidge::Elts_t Aidge::ScalingImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { // this implementation can be in-place @@ -27,16 +27,19 @@ Aidge::Elts_t Aidge::ScalingImpl_cpu::getNbRequiredProtected(const Aidge::IOInde } void Aidge::ScalingImpl_cpu::forward() { - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + const auto& op_ = dynamic_cast<const Scaling_Op&>(mOp); + AIDGE_ASSERT(op_.getInput(0), "missing input #0 in Scaling Operator."); // Find the correct kernel type auto kernelFunc = Registrar<ScalingImplForward_cpu>::create({ - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), - std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); + op_.getInput(0)->dataType(), + op_.getOutput(0)->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const Scaling_Op&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), - getCPUPtr(mOp.getRawInput(0)), - getCPUPtr(mOp.getRawOutput(0))); + kernelFunc(op_.scalingFactor(), + op_.quantizedNbBits(), + op_.isOutputUnsigned(), + op_.getInput(0)->size(), + getCPUPtr(mOp.getRawInput(0)), + getCPUPtr(mOp.getRawOutput(0))); } diff --git a/src/operator/SliceImpl.cpp b/src/operator/SliceImpl.cpp index f6dc901f4759cc86515b1482a4566db4668a48c8..8ffe4dcdd97b58758885b013d0c1770bd98a83ba 100644 --- a/src/operator/SliceImpl.cpp +++ b/src/operator/SliceImpl.cpp @@ -9,17 +9,15 @@ * ********************************************************************************/ -#include <cassert> -#include <numeric> // std::accumulate -#include <functional> // std::multiplies +#include "aidge/backend/cpu/operator/SliceImpl.hpp" -#include "aidge/operator/Slice.hpp" +#include <vector> -#include "aidge/backend/cpu/operator/SliceImpl.hpp" +#include "aidge/backend/cpu/data/GetCPUPtr.h" #include "aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp" +#include "aidge/operator/Slice.hpp" +#include "aidge/utils/Log.hpp" #include "aidge/utils/Types.h" -#include "aidge/backend/cpu/data/GetCPUPtr.h" -#include <vector> Aidge::Elts_t Aidge::SliceImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { // this implementation can be in-place @@ -27,16 +25,20 @@ Aidge::Elts_t Aidge::SliceImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_ } void Aidge::SliceImpl_cpu::forward() { - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); + const auto& op_ = dynamic_cast<const Slice_Op&>(mOp); + AIDGE_ASSERT(op_.getInput(0), "missing input #0 in Slice Operator."); // Find the correct kernel type auto kernelFunc = Registrar<SliceImplForward_cpu>::create({ - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), - std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); + op_.getInput(0)->dataType(), + op_.getOutput(0)->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const Slice_Op&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(), - getCPUPtr(mOp.getRawInput(0)), - getCPUPtr(mOp.getRawOutput(0))); + kernelFunc(op_.starts(), + op_.ends(), + op_.axes(), + op_.steps(), + op_.getInput(0)->dims(), + getCPUPtr(mOp.getRawInput(0)), + getCPUPtr(mOp.getRawOutput(0))); } diff --git a/src/operator/SoftmaxImpl.cpp b/src/operator/SoftmaxImpl.cpp index ed3d625dca61b39e383762a59a26e483e956e1c8..5bc3699e2146e36a63b4a1602ca1cb86e3ff1e2f 100644 --- a/src/operator/SoftmaxImpl.cpp +++ b/src/operator/SoftmaxImpl.cpp @@ -28,18 +28,18 @@ Aidge::Elts_t Aidge::SoftmaxImpl_cpu::getNbRequiredProtected(const Aidge::IOInde } void Aidge::SoftmaxImpl_cpu::forward() { - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims()>1); + const auto& op_ = dynamic_cast<const Softmax_Op&>(mOp); + AIDGE_ASSERT(!op_.getInput(0)->empty(), "Softmax input empty"); // Find the correct kernel type auto kernelFunc = Registrar<SoftmaxImplForward_cpu>::create({ - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), - std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); + op_.getInput(0)->dataType(), + op_.getOutput(0)->dataType()}); - Softmax_Op::Attrs attr = dynamic_cast<const Softmax_Op&>(mOp).getStaticAttributes(); + std::int32_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis(); // Call kernel - kernelFunc(std::get<0>(attr), // axisIdx + kernelFunc(static_cast<std::size_t>(axis), // axisIdx std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); diff --git a/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp b/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp index 43903100a163b4499ed96c44d77ad119534d2eaa..d5f2065b624de431b43edef9a83bf079905129dd 100644 --- a/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp +++ b/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp @@ -237,7 +237,7 @@ TEST_CASE("[cpu/operator] GlobalAveragePooling", REQUIRE(Tres->dims().at(i) == op->getOutput(0)->dims().at(i)); } - REQUIRE(approxEq<float>(*(op->getOutput(0)), *Tres)); + REQUIRE(approxEq<float>(*(op->getOutput(0)), *Tres, 1e-4f)); delete[] array0; delete[] result; diff --git a/unit_tests/operator/Test_MetaOperator.cpp b/unit_tests/operator/Test_MetaOperator.cpp index 2893788ee0922b238147a0562cf79d7535d5f60b..271a1e2f9860d92f840916f6b2e396993b0bea39 100644 --- a/unit_tests/operator/Test_MetaOperator.cpp +++ b/unit_tests/operator/Test_MetaOperator.cpp @@ -362,13 +362,12 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") { myLSTM->input(8).first->getOperator()->setOutput(0, myInitR); auto g = getConnectedGraphView(myLSTM); - g->setDataType(DataType::Float32); - g->setBackend("cpu"); + g->compile("cpu", DataType::Float32); g->save("lstm_seq", true, true); auto scheduler = SequentialScheduler(g); - scheduler.forward(true); + scheduler.forward(); scheduler.saveSchedulingDiagram("lstm_seq_schedule"); std::shared_ptr<Tensor> myHiddenState = std::make_shared<Tensor>( diff --git a/unit_tests/recipies/Test_HorizontalTiling.cpp b/unit_tests/recipies/Test_HorizontalTiling.cpp index 2c10cdf369d7d37ea67b70b9dfe3e76018da2a32..7c127548417492141c3ea1eeb9374042befe75d2 100644 --- a/unit_tests/recipies/Test_HorizontalTiling.cpp +++ b/unit_tests/recipies/Test_HorizontalTiling.cpp @@ -174,7 +174,7 @@ TEST_CASE("[core/recipes] Tiling(transformation)", "[Tiling][Recipes]") { REQUIRE(*(std::dynamic_pointer_cast<Conv_Op<2>>(myConv->getOperator())->getOutput(0)) == *myOutput); GraphView::replace({myConv, myConv->getParent(1), myConv->getParent(2)}, tiledConv); - g->compile("cpu", DataType::Int32); + g->compile("cpu", DataType::Int32, 0, {{2,3,5,5}}); // changes myInput DataType from Int32 to Float32. Why?????? s.resetScheduling(); s.forward();