diff --git a/include/aidge/backend/cpu.hpp b/include/aidge/backend/cpu.hpp
index e3fa457c5cf557328a7fbf2049b9e577c44391f9..1f45d700f6fc9f1d69682cb2de601979049c0af6 100644
--- a/include/aidge/backend/cpu.hpp
+++ b/include/aidge/backend/cpu.hpp
@@ -13,7 +13,6 @@
 #define AIDGE_CPU_IMPORTS_H_
 
 #include "aidge/backend/cpu/data/TensorImpl.hpp"
-
 #include "aidge/backend/cpu/operator/AddImpl.hpp"
 #include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp"
 #include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp"
@@ -25,8 +24,7 @@
 #include "aidge/backend/cpu/operator/MatMulImpl.hpp"
 #include "aidge/backend/cpu/operator/ProducerImpl.hpp"
 #include "aidge/backend/cpu/operator/ReLUImpl.hpp"
-#include "aidge/backend/cpu/operator/ScalingImpl.hpp"
-#include "aidge/backend/cpu/operator/SliceImpl.hpp"
 #include "aidge/backend/cpu/operator/SoftmaxImpl.hpp"
+#include "aidge/backend/cpu/operator/ScalingImpl.hpp"
 
 #endif /* AIDGE_CPU_IMPORTS_H_ */
\ No newline at end of file
diff --git a/include/aidge/backend/cpu/operator/SliceImpl.hpp b/include/aidge/backend/cpu/operator/SliceImpl.hpp
deleted file mode 100644
index c50049206f9fd9b70d6d724aa6d651998d1f1de1..0000000000000000000000000000000000000000
--- a/include/aidge/backend/cpu/operator/SliceImpl.hpp
+++ /dev/null
@@ -1,112 +0,0 @@
-/********************************************************************************
- * Copyright (c) 2023 CEA-List
- *
- * This program and the accompanying materials are made available under the
- * terms of the Eclipse Public License 2.0 which is available at
- * http://www.eclipse.org/legal/epl-2.0.
- *
- * SPDX-License-Identifier: EPL-2.0
- *
- ********************************************************************************/
-
-#ifndef AIDGE_CPU_OPERATOR_SLICEIMPL_H_
-#define AIDGE_CPU_OPERATOR_SLICEIMPL_H_
-
-#include "aidge/backend/OperatorImpl.hpp"
-#include "aidge/operator/Slice.hpp"
-#include "aidge/utils/Registrar.hpp"
-#include "aidge/utils/Types.h"
-#include <memory>
-#include <vector>
-
-namespace Aidge {
-// class Slice_Op;
-
-// compute kernel registry for forward and backward
-template <DimIdx_t DIM>
-class SliceImplForward_cpu
-    : public Registrable<SliceImplForward_cpu<DIM>, std::tuple<DataType>, void(std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, const void*, void*)> {
-};
-template <DimIdx_t DIM>
-class SliceImplBackward_cpu
-    : public Registrable<SliceImplBackward_cpu<DIM>, std::tuple<DataType>, void(std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, const void*, void*)> {
-};
-
-template <DimIdx_t DIM>
-class SliceImpl_cpu : public OperatorImpl {
-   private:
-    const Slice_Op<DIM>& mOp;
-    std::array<NbElts_t, 1> mNbConsumedData;
-    std::array<NbElts_t, 1> mNbProducedData;
-
-   public:
-    SliceImpl_cpu(const Slice_Op<DIM>& op) : mOp(op), mNbConsumedData({0}), mNbProducedData({0}) {}
-
-    static std::unique_ptr<SliceImpl_cpu> create(const Slice_Op<DIM>& op) {
-        return std::make_unique<SliceImpl_cpu>(op);
-    }
-
-   public:
-    NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final {
-        assert(mOp.getInput(0) && "requires valid input");
-
-        // Requires the whole tensors
-        const auto& inputDims = mOp.getInput(0)->dims();
-
-        return std::accumulate(inputDims.begin(), inputDims.end(),
-                        static_cast<NbElts_t>(1), std::multiplies<NbElts_t>());
-    }
-    NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final {
-        return 0;
-    }
-    NbElts_t getRequiredMemory(const IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final {
-        (void) outputIdx;
-        (void) inputsSize;
-        const auto& outputDims = mOp.getOutput(0)->dims();
-        return std::accumulate(outputDims.begin(), outputDims.end(),
-                        static_cast<NbElts_t>(1), std::multiplies<NbElts_t>());
-    }
-    NbElts_t getNbConsumedData(const IOIndex_t /*inputIdx*/) const override final {
-        return mNbConsumedData[0];
-    }
-    NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final {
-        return mNbProducedData[0];
-    }
-    void updateConsummerProducer() override final {
-        mNbConsumedData[0]+= getNbRequiredData(0); // each input is consumed by the minimum amount for a forward pass
-
-        mNbProducedData[0]+= getRequiredMemory(0, {});
-    }
-
-    void forward() {
-        // FIXME: uncomment the following code once memory handling will work
-        assert(mOp.getInput(0) && "missing input #0");
-
-        // Find the correct kernel type
-        auto kernelFunc = Registrar<SliceImplForward_cpu<DIM>>::create({
-            mOp.getInput(0)->dataType(),
-            mOp.getOutput(0)->dataType()});
-
-        // Call kernel
-        kernelFunc(mOp->getInput(0)->dims(),
-            mOp->template getAttr<SliceAttr::SliceDims>(),
-            mOp.getInput(0)->getImpl()->rawPtr(),
-            mOp.getOutput(0)->getImpl()->rawPtr());
-
-        mNbConsumedData[0]+= getNbRequiredData(0); // each input is consumed by the minimum amount for a forward pass
-
-        mNbProducedData[0]+= getRequiredMemory(0, {});
-    }
-
-    void backward() {
-        printf("Not implemented yet.\n");
-    }
-};
-
-namespace {
-template <DimIdx_t DIM>
-static Registrar<Slice_Op<DIM>> registrarSliceImpl_cpu("cpu", Aidge::SliceImpl_cpu<DIM>::create);
-}
-}  // namespace Aidge
-
-#endif /* AIDGE_CPU_OPERATOR_LEAKYRELUIMPL_H_ */
diff --git a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp
deleted file mode 100644
index 18e599880a91fd881525977c1d37591944565c8c..0000000000000000000000000000000000000000
--- a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp
+++ /dev/null
@@ -1,71 +0,0 @@
-/********************************************************************************
- * Copyright (c) 2023 CEA-List
- *
- * This program and the accompanying materials are made available under the
- * terms of the Eclipse Public License 2.0 which is available at
- * http://www.eclipse.org/legal/epl-2.0.
- *
- * SPDX-License-Identifier: EPL-2.0
- *
- ********************************************************************************/
-
-#ifndef AIDGE_CPU_OPERATOR_SLICEIMPL_FORWARD_KERNEL_H_
-#define AIDGE_CPU_OPERATOR_SLICEIMPL_FORWARD_KERNEL_H_
-
-#include "aidge/utils/Registrar.hpp"
-#include <array>
-#include <cstddef>
-
-#include "aidge/backend/cpu/operator/SliceImpl.hpp"
-
-namespace Aidge {
-template <class I, class O, std::size_t DIM>
-void SliceImpl_cpu_forward_kernel(const std::array<std::size_t, DIM> inputDims,
-                                     const std::array<std::size_t, DIM> slicedDims,
-                                     const void* input_,
-                                     void* output_) {
-
-    const I* input = static_cast<const I*>(input_);
-    O* output = static_cast<O*>(output_);
-
-	// for inputDims = {4,5,5,3} & slicedDims = {3,2,2,1}, substractDims = {1,5,5,3}
-    std::array<std::size_t, DIM> substractedDims;
-    for (std::size_t i = 0; i < DIM; ++i) {
-        substractedDims[i] = inputDims[i] - slicedDims[i];
-    }
-
-	// for slicedDims = {3,2,2,1}, prodSlicedDims = {12,4,2,1}
-    std::array<std::size_t, DIM> prodSlicedDims;
-    std::array<std::size_t, DIM+1> prodInputDims;
-	prodSlicedDims[DIM - 1] = slicedDims[DIM - 1];
-	prodInputDims[DIM - 1] = inputDims[DIM - 1];
-	prodInputDims[DIM] = 1;
-	for (std::size_t i = 2; i < DIM; ++i) {
-		prodSlicedDims[DIM - i] = prodSlicedDims[DIM - i + 1]*slicedDims[DIM - i];
-		prodInputDims[DIM - i] = prodInputDims[DIM - i + 1]*inputDims[DIM - i];
-	}
-
-	std::size_t j = 0;
-	std::size_t i = 0;
-	for (std::size_t = 0; j < prodSlicedDims[0]; ++j) {
-		output[j] = input[i++];
-		for (std::size_t idx = DIM - 1; idx > 0; --idx) {
-			i += j % prodSlicedDims[idx] == 0 ? substractedDims[idx]*prodInputDims[idx+1] : 0;
-		}
-	}
-}
-
-namespace {
-template <std::size_t DIM>
-static Registrar<SliceImplForward_cpu<DIM>> registrarSliceImplForward_cpu_Float32(
-        {DataType::Float32, DataType::Float32}, Aidge::SliceImpl_cpu_forward_kernel<float, float, DIM>);
-template <std::size_t DIM>
-static Registrar<SliceImplForward_cpu<DIM>> registrarSliceImplForward_cpu_Int32(
-        {DataType::Int32, DataType::Int32}, Aidge::SliceImpl_cpu_forward_kernel<int, int, DIM>);
-template <std::size_t DIM>
-static Registrar<SliceImplForward_cpu<DIM>> registrarSliceImplForward_cpu_Float64(
-        {DataType::Float64, DataType::Float64}, Aidge::SliceImpl_cpu_forward_kernel<double, double, DIM>);
-}  // namespace
-}  // namespace Aidge
-
-#endif /* AIDGE_CPU_OPERATOR_LEAKYRELUIMPL_FORWARD_KERNEL_H_ */
diff --git a/unit_tests/operator/Test_SliceImpl.cpp b/unit_tests/operator/Test_SliceImpl.cpp
deleted file mode 100644
index 486f6edec006d3505cabe2d66b3820862cde3b69..0000000000000000000000000000000000000000
--- a/unit_tests/operator/Test_SliceImpl.cpp
+++ /dev/null
@@ -1,150 +0,0 @@
-/********************************************************************************
- * Copyright (c) 2023 CEA-List
- *
- * This program and the accompanying materials are made available under the
- * terms of the Eclipse Public License 2.0 which is available at
- * http://www.eclipse.org/legal/epl-2.0.
- *
- * SPDX-License-Identifier: EPL-2.0
- *
- ********************************************************************************/
-
-#include <catch2/catch_test_macros.hpp>
-
-#include "aidge/data/Tensor.hpp"
-#include "aidge/operator/Slice.hpp"
-
-#include "aidge/backend/cpu.hpp"
-
-using namespace Aidge;
-
-TEST_CASE("[cpu/operator] Slice(forward)") {
-    SECTION("1D Tensor") {
-        std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array1D<int,10> {
-            {0, 1, 2,-3, 4,-5,-6, 7, 8, 9}
-        });
-        std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<int,4> {
-            {0, 1, 2,-3}
-        });
-
-        std::shared_ptr<Node> mySlice = Slice(0, {4});
-        mySlice->getOperator()->setDatatype(DataType::Int32);
-        mySlice->getOperator()->setBackend("cpu");
-        mySlice->getOperator()->associateInput(0,input0);
-        mySlice->getOperator()->computeOutputDims();
-        mySlice->forward();
-        REQUIRE(mySlice->getOperator()->output(0) == *expectedOutput);
-    }
-
-    SECTION("2D Tensor") {
-        std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array2D<int,2,10> {
-            {
-                { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-            }
-        });
-        std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<int,2,3> {
-            {
-                {-5,-6, 7},
-                {-5,-6, 7}
-            }
-        });
-
-        std::shared_ptr<Node> mySlice = Slice(5, {2,3});
-        mySlice->getOperator()->setDatatype(DataType::Int32);
-        mySlice->getOperator()->setBackend("cpu");
-        mySlice->getOperator()->associateInput(0,input0);
-        mySlice->getOperator()->computeOutputDims();
-        mySlice->forward();
-        REQUIRE(*mySlice->getOperator()->getOutput(0) == *expectedOutput);
-    }
-
-    SECTION("3D Tensor") {
-        std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array3D<int,2,2,10> {
-            {
-                {
-                    { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                    {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-                },
-                {
-                    { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                    {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-                }
-            }
-        });
-        std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<int,1,1,3> {
-            {
-                {
-                    { 4,-5,-6}
-                }
-            }
-        });
-
-        std::shared_ptr<Node> mySlice = Slice(14, {1,1,3});
-        mySlice->getOperator()->setDatatype(DataType::Int32);
-        mySlice->getOperator()->setBackend("cpu");
-        mySlice->getOperator()->associateInput(0,input0);
-        mySlice->getOperator()->computeOutputDims();
-        mySlice->forward();
-        REQUIRE(mySlice->getOperator()->output(0) == *expectedOutput);
-    }
-
-    SECTION("4D Tensor") {
-        std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array4D<int,2,2,2,10> {
-            {
-                {
-                    {
-                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-                    },
-                    {
-                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-                    }
-                },
-                {
-                    {
-                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-                    },
-                    {
-                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-                    }
-                }
-            }
-        });
-        std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array4D<int,2,2,2,10> {
-            {
-                {
-                    {
-                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-                    },
-                    {
-                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-                    }
-                },
-                {
-                    {
-                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-                    },
-                    {
-                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
-                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
-                    }
-                }
-            }
-        });
-
-        std::shared_ptr<Node> mySlice = Slice(0, {2,2,2,10});
-        mySlice->getOperator()->setDatatype(DataType::Int32);
-        mySlice->getOperator()->setBackend("cpu");
-        mySlice->getOperator()->associateInput(0,input0);
-        mySlice->getOperator()->computeOutputDims();
-        mySlice->forward();
-        REQUIRE(mySlice->getOperator()->output(0) == *expectedOutput);
-    }
-}
\ No newline at end of file