diff --git a/include/aidge/backend/cpu.hpp b/include/aidge/backend/cpu.hpp index e3fa457c5cf557328a7fbf2049b9e577c44391f9..1f45d700f6fc9f1d69682cb2de601979049c0af6 100644 --- a/include/aidge/backend/cpu.hpp +++ b/include/aidge/backend/cpu.hpp @@ -13,7 +13,6 @@ #define AIDGE_CPU_IMPORTS_H_ #include "aidge/backend/cpu/data/TensorImpl.hpp" - #include "aidge/backend/cpu/operator/AddImpl.hpp" #include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp" #include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp" @@ -25,8 +24,7 @@ #include "aidge/backend/cpu/operator/MatMulImpl.hpp" #include "aidge/backend/cpu/operator/ProducerImpl.hpp" #include "aidge/backend/cpu/operator/ReLUImpl.hpp" -#include "aidge/backend/cpu/operator/ScalingImpl.hpp" -#include "aidge/backend/cpu/operator/SliceImpl.hpp" #include "aidge/backend/cpu/operator/SoftmaxImpl.hpp" +#include "aidge/backend/cpu/operator/ScalingImpl.hpp" #endif /* AIDGE_CPU_IMPORTS_H_ */ \ No newline at end of file diff --git a/include/aidge/backend/cpu/operator/SliceImpl.hpp b/include/aidge/backend/cpu/operator/SliceImpl.hpp deleted file mode 100644 index c50049206f9fd9b70d6d724aa6d651998d1f1de1..0000000000000000000000000000000000000000 --- a/include/aidge/backend/cpu/operator/SliceImpl.hpp +++ /dev/null @@ -1,112 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef AIDGE_CPU_OPERATOR_SLICEIMPL_H_ -#define AIDGE_CPU_OPERATOR_SLICEIMPL_H_ - -#include "aidge/backend/OperatorImpl.hpp" -#include "aidge/operator/Slice.hpp" -#include "aidge/utils/Registrar.hpp" -#include "aidge/utils/Types.h" -#include <memory> -#include <vector> - -namespace Aidge { -// class Slice_Op; - -// compute kernel registry for forward and backward -template <DimIdx_t DIM> -class SliceImplForward_cpu - : public Registrable<SliceImplForward_cpu<DIM>, std::tuple<DataType>, void(std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, const void*, void*)> { -}; -template <DimIdx_t DIM> -class SliceImplBackward_cpu - : public Registrable<SliceImplBackward_cpu<DIM>, std::tuple<DataType>, void(std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, const void*, void*)> { -}; - -template <DimIdx_t DIM> -class SliceImpl_cpu : public OperatorImpl { - private: - const Slice_Op<DIM>& mOp; - std::array<NbElts_t, 1> mNbConsumedData; - std::array<NbElts_t, 1> mNbProducedData; - - public: - SliceImpl_cpu(const Slice_Op<DIM>& op) : mOp(op), mNbConsumedData({0}), mNbProducedData({0}) {} - - static std::unique_ptr<SliceImpl_cpu> create(const Slice_Op<DIM>& op) { - return std::make_unique<SliceImpl_cpu>(op); - } - - public: - NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final { - assert(mOp.getInput(0) && "requires valid input"); - - // Requires the whole tensors - const auto& inputDims = mOp.getInput(0)->dims(); - - return std::accumulate(inputDims.begin(), inputDims.end(), - static_cast<NbElts_t>(1), std::multiplies<NbElts_t>()); - } - NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final { - return 0; - } - NbElts_t getRequiredMemory(const IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final { - (void) outputIdx; - (void) inputsSize; - const auto& outputDims = mOp.getOutput(0)->dims(); - return std::accumulate(outputDims.begin(), outputDims.end(), - static_cast<NbElts_t>(1), std::multiplies<NbElts_t>()); - } - NbElts_t getNbConsumedData(const IOIndex_t /*inputIdx*/) const override final { - return mNbConsumedData[0]; - } - NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final { - return mNbProducedData[0]; - } - void updateConsummerProducer() override final { - mNbConsumedData[0]+= getNbRequiredData(0); // each input is consumed by the minimum amount for a forward pass - - mNbProducedData[0]+= getRequiredMemory(0, {}); - } - - void forward() { - // FIXME: uncomment the following code once memory handling will work - assert(mOp.getInput(0) && "missing input #0"); - - // Find the correct kernel type - auto kernelFunc = Registrar<SliceImplForward_cpu<DIM>>::create({ - mOp.getInput(0)->dataType(), - mOp.getOutput(0)->dataType()}); - - // Call kernel - kernelFunc(mOp->getInput(0)->dims(), - mOp->template getAttr<SliceAttr::SliceDims>(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr()); - - mNbConsumedData[0]+= getNbRequiredData(0); // each input is consumed by the minimum amount for a forward pass - - mNbProducedData[0]+= getRequiredMemory(0, {}); - } - - void backward() { - printf("Not implemented yet.\n"); - } -}; - -namespace { -template <DimIdx_t DIM> -static Registrar<Slice_Op<DIM>> registrarSliceImpl_cpu("cpu", Aidge::SliceImpl_cpu<DIM>::create); -} -} // namespace Aidge - -#endif /* AIDGE_CPU_OPERATOR_LEAKYRELUIMPL_H_ */ diff --git a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp deleted file mode 100644 index 18e599880a91fd881525977c1d37591944565c8c..0000000000000000000000000000000000000000 --- a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp +++ /dev/null @@ -1,71 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef AIDGE_CPU_OPERATOR_SLICEIMPL_FORWARD_KERNEL_H_ -#define AIDGE_CPU_OPERATOR_SLICEIMPL_FORWARD_KERNEL_H_ - -#include "aidge/utils/Registrar.hpp" -#include <array> -#include <cstddef> - -#include "aidge/backend/cpu/operator/SliceImpl.hpp" - -namespace Aidge { -template <class I, class O, std::size_t DIM> -void SliceImpl_cpu_forward_kernel(const std::array<std::size_t, DIM> inputDims, - const std::array<std::size_t, DIM> slicedDims, - const void* input_, - void* output_) { - - const I* input = static_cast<const I*>(input_); - O* output = static_cast<O*>(output_); - - // for inputDims = {4,5,5,3} & slicedDims = {3,2,2,1}, substractDims = {1,5,5,3} - std::array<std::size_t, DIM> substractedDims; - for (std::size_t i = 0; i < DIM; ++i) { - substractedDims[i] = inputDims[i] - slicedDims[i]; - } - - // for slicedDims = {3,2,2,1}, prodSlicedDims = {12,4,2,1} - std::array<std::size_t, DIM> prodSlicedDims; - std::array<std::size_t, DIM+1> prodInputDims; - prodSlicedDims[DIM - 1] = slicedDims[DIM - 1]; - prodInputDims[DIM - 1] = inputDims[DIM - 1]; - prodInputDims[DIM] = 1; - for (std::size_t i = 2; i < DIM; ++i) { - prodSlicedDims[DIM - i] = prodSlicedDims[DIM - i + 1]*slicedDims[DIM - i]; - prodInputDims[DIM - i] = prodInputDims[DIM - i + 1]*inputDims[DIM - i]; - } - - std::size_t j = 0; - std::size_t i = 0; - for (std::size_t = 0; j < prodSlicedDims[0]; ++j) { - output[j] = input[i++]; - for (std::size_t idx = DIM - 1; idx > 0; --idx) { - i += j % prodSlicedDims[idx] == 0 ? substractedDims[idx]*prodInputDims[idx+1] : 0; - } - } -} - -namespace { -template <std::size_t DIM> -static Registrar<SliceImplForward_cpu<DIM>> registrarSliceImplForward_cpu_Float32( - {DataType::Float32, DataType::Float32}, Aidge::SliceImpl_cpu_forward_kernel<float, float, DIM>); -template <std::size_t DIM> -static Registrar<SliceImplForward_cpu<DIM>> registrarSliceImplForward_cpu_Int32( - {DataType::Int32, DataType::Int32}, Aidge::SliceImpl_cpu_forward_kernel<int, int, DIM>); -template <std::size_t DIM> -static Registrar<SliceImplForward_cpu<DIM>> registrarSliceImplForward_cpu_Float64( - {DataType::Float64, DataType::Float64}, Aidge::SliceImpl_cpu_forward_kernel<double, double, DIM>); -} // namespace -} // namespace Aidge - -#endif /* AIDGE_CPU_OPERATOR_LEAKYRELUIMPL_FORWARD_KERNEL_H_ */ diff --git a/unit_tests/operator/Test_SliceImpl.cpp b/unit_tests/operator/Test_SliceImpl.cpp deleted file mode 100644 index 486f6edec006d3505cabe2d66b3820862cde3b69..0000000000000000000000000000000000000000 --- a/unit_tests/operator/Test_SliceImpl.cpp +++ /dev/null @@ -1,150 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#include <catch2/catch_test_macros.hpp> - -#include "aidge/data/Tensor.hpp" -#include "aidge/operator/Slice.hpp" - -#include "aidge/backend/cpu.hpp" - -using namespace Aidge; - -TEST_CASE("[cpu/operator] Slice(forward)") { - SECTION("1D Tensor") { - std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array1D<int,10> { - {0, 1, 2,-3, 4,-5,-6, 7, 8, 9} - }); - std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<int,4> { - {0, 1, 2,-3} - }); - - std::shared_ptr<Node> mySlice = Slice(0, {4}); - mySlice->getOperator()->setDatatype(DataType::Int32); - mySlice->getOperator()->setBackend("cpu"); - mySlice->getOperator()->associateInput(0,input0); - mySlice->getOperator()->computeOutputDims(); - mySlice->forward(); - REQUIRE(mySlice->getOperator()->output(0) == *expectedOutput); - } - - SECTION("2D Tensor") { - std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array2D<int,2,10> { - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - } - }); - std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<int,2,3> { - { - {-5,-6, 7}, - {-5,-6, 7} - } - }); - - std::shared_ptr<Node> mySlice = Slice(5, {2,3}); - mySlice->getOperator()->setDatatype(DataType::Int32); - mySlice->getOperator()->setBackend("cpu"); - mySlice->getOperator()->associateInput(0,input0); - mySlice->getOperator()->computeOutputDims(); - mySlice->forward(); - REQUIRE(*mySlice->getOperator()->getOutput(0) == *expectedOutput); - } - - SECTION("3D Tensor") { - std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array3D<int,2,2,10> { - { - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - }, - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - } - } - }); - std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<int,1,1,3> { - { - { - { 4,-5,-6} - } - } - }); - - std::shared_ptr<Node> mySlice = Slice(14, {1,1,3}); - mySlice->getOperator()->setDatatype(DataType::Int32); - mySlice->getOperator()->setBackend("cpu"); - mySlice->getOperator()->associateInput(0,input0); - mySlice->getOperator()->computeOutputDims(); - mySlice->forward(); - REQUIRE(mySlice->getOperator()->output(0) == *expectedOutput); - } - - SECTION("4D Tensor") { - std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array4D<int,2,2,2,10> { - { - { - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - }, - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - } - }, - { - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - }, - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - } - } - } - }); - std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array4D<int,2,2,2,10> { - { - { - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - }, - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - } - }, - { - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - }, - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - } - } - } - }); - - std::shared_ptr<Node> mySlice = Slice(0, {2,2,2,10}); - mySlice->getOperator()->setDatatype(DataType::Int32); - mySlice->getOperator()->setBackend("cpu"); - mySlice->getOperator()->associateInput(0,input0); - mySlice->getOperator()->computeOutputDims(); - mySlice->forward(); - REQUIRE(mySlice->getOperator()->output(0) == *expectedOutput); - } -} \ No newline at end of file