From 63ec8e67e28c7b2aace16ad2347a3f770e27cf51 Mon Sep 17 00:00:00 2001 From: NAUD Maxence <maxence.naud@cea.fr> Date: Wed, 22 Nov 2023 17:26:03 +0000 Subject: [PATCH] Update operators implementation - adapt to core changes with Operator not refering to Tensors anymore - remove assertions already performed in abstract operators constructions - fix missing 'template' keyword prior to dependent template name 'dims' --- src/operator/AddImpl.cpp | 26 +++++------ src/operator/AvgPoolingImpl.cpp | 2 +- src/operator/BatchNormImpl.cpp | 2 +- src/operator/ConcatImpl.cpp | 26 +++++------ src/operator/ConvDepthWiseImpl.cpp | 4 +- src/operator/ConvImpl.cpp | 2 +- src/operator/DivImpl.cpp | 9 ---- src/operator/FCImpl.cpp | 2 +- src/operator/MatMulImpl.cpp | 2 +- src/operator/MaxPoolingImpl.cpp | 2 +- src/operator/MulImpl.cpp | 13 +----- src/operator/PadImpl.cpp | 2 +- src/operator/PowImpl.cpp | 11 +---- src/operator/ProducerImpl.cpp | 2 +- src/operator/ReLUImpl.cpp | 2 +- src/operator/ScalingImpl.cpp | 2 +- src/operator/SliceImpl.cpp | 72 +++++++++++++++--------------- src/operator/SubImpl.cpp | 8 ---- 18 files changed, 76 insertions(+), 113 deletions(-) diff --git a/src/operator/AddImpl.cpp b/src/operator/AddImpl.cpp index 36eff221..851aaa5c 100644 --- a/src/operator/AddImpl.cpp +++ b/src/operator/AddImpl.cpp @@ -21,10 +21,10 @@ #include "aidge/backend/cpu/operator/AddImpl_forward_kernels.hpp" Aidge::NbElts_t Aidge::AddImpl_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const { - assert(mOp.getInput(inputIdx) && "requires valid input"); + assert(mOp.getRawInput(inputIdx) && "requires valid input"); // Requires the whole tensors - const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getInput(inputIdx))->dims(); + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(inputIdx))->dims(); return std::accumulate(inputDims.begin(), inputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>()); } @@ -38,7 +38,7 @@ Aidge::NbElts_t Aidge::AddImpl_cpu::getRequiredMemory(const Aidge::IOIndex_t ou assert(outputIdx == 0 && "operator has only one output"); (void) outputIdx; - const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims(); + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(); return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>()); } @@ -61,25 +61,23 @@ void Aidge::AddImpl_cpu::updateConsummerProducer() { } void Aidge::AddImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input in Add operator"); - DataType datatypeFirstInput = mOp.getInput(0)->dataType(); + assert(mOp.getRawInput(0) && "missing input in Add operator"); + DataType datatypeFirstInput = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(); for (IOIndex_t i = 1; i < mOp.nbInputs(); ++i) { - assert(mOp.getInput(i) && "missing input in Add operator"); - assert(mOp.getInput(i)->dataType() == datatypeFirstInput); + assert(mOp.getRawInput(i) && "missing input in Add operator"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(i))->dataType() == datatypeFirstInput); } auto kernelFunc = Registrar<AddImplForward_cpu>::create({ datatypeFirstInput, - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); std::vector<const void*> opInputs; for (IOIndex_t i = 0; i < mOp.nbInputs(); ++i) { - opInputs.push_back(mOp.getInput(i)->getImpl()->rawPtr()); + opInputs.push_back(std::static_pointer_cast<Tensor>(mOp.getRawInput(i))->getImpl()->rawPtr()); } - kernelFunc(mOp.getInput(0)->size(), + kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), opInputs, - mOp.getOutput(0)->getImpl()->rawPtr()); -} - -void Aidge::AddImpl_cpu::backward() { printf("Not implemented yet.\n"); } \ No newline at end of file + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); +} \ No newline at end of file diff --git a/src/operator/AvgPoolingImpl.cpp b/src/operator/AvgPoolingImpl.cpp index 299e377a..ad236f00 100644 --- a/src/operator/AvgPoolingImpl.cpp +++ b/src/operator/AvgPoolingImpl.cpp @@ -34,7 +34,7 @@ void Aidge::AvgPoolingImpl2D_cpu::forward() { // Call kernel kernelFunc(dynamic_cast<const AvgPooling_Op<2>&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/BatchNormImpl.cpp b/src/operator/BatchNormImpl.cpp index 69269175..4cfd4b1b 100644 --- a/src/operator/BatchNormImpl.cpp +++ b/src/operator/BatchNormImpl.cpp @@ -40,7 +40,7 @@ void Aidge::BatchNormImpl2D_cpu::forward() { // Call kernel kernelFunc(dynamic_cast<const BatchNorm_Op<2>&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->getImpl()->rawPtr(), diff --git a/src/operator/ConcatImpl.cpp b/src/operator/ConcatImpl.cpp index 5ad46f2a..d4605448 100644 --- a/src/operator/ConcatImpl.cpp +++ b/src/operator/ConcatImpl.cpp @@ -21,10 +21,10 @@ #include "aidge/backend/cpu/operator/ConcatImpl_forward_kernels.hpp" Aidge::NbElts_t Aidge::ConcatImpl_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const { - assert(mOp.getInput(inputIdx) && "requires valid input"); + assert(mOp.getRawInput(inputIdx) && "requires valid input"); // Requires the whole tensors - const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getInput(inputIdx))->dims(); + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(inputIdx))->dims(); return std::accumulate(inputDims.begin(), inputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>()); } @@ -38,7 +38,7 @@ Aidge::NbElts_t Aidge::ConcatImpl_cpu::getRequiredMemory(const Aidge::IOIndex_t assert(outputIdx == 0 && "operator has only one output"); (void) outputIdx; - const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims(); + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(); return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>()); } @@ -61,29 +61,29 @@ void Aidge::ConcatImpl_cpu::updateConsummerProducer() { } void Aidge::ConcatImpl_cpu::forward() { - assert(mOp.getInput(0) && "missing input in Concat operator"); - DataType datatypeFirstInput = mOp.getInput(0)->dataType(); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input in Concat operator"); + DataType datatypeFirstInput = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(); for (IOIndex_t i = 1; i < mOp.nbInputs(); ++i) { - assert(mOp.getInput(i) && "missing input in Concat operator"); - assert(mOp.getInput(i)->dataType() == datatypeFirstInput); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(i)) && "missing input in Concat operator"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(i))->dataType() == datatypeFirstInput); } auto kernelFunc = Registrar<ConcatImplForward_cpu>::create({ datatypeFirstInput, - mOp.getOutput(0)->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); std::vector<const void*> opInputs; std::vector<DimSize_t> opInputAxis; for (IOIndex_t i = 0; i < mOp.nbInputs(); ++i) { - opInputs.push_back(mOp.getInput(i)->getImpl()->rawPtr()); - opInputAxis.push_back(mOp.getInput(i)->dims()[mOp.template getAttr<DimSize_t>("Axis")]); + opInputs.push_back(std::static_pointer_cast<Tensor>(mOp.getRawInput(i))->getImpl()->rawPtr()); + opInputAxis.push_back(std::static_pointer_cast<Tensor>(mOp.getRawInput(i))->dims()[dynamic_cast<const Concat_Op&>(mOp).template getAttr<DimSize_t>("Axis")]); } - kernelFunc(mOp.getStaticAttributes(), - mOp.getInput(0)->dims(), + kernelFunc(dynamic_cast<const Concat_Op&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(), opInputAxis, opInputs, - mOp.getOutput(0)->getImpl()->rawPtr()); + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } void Aidge::ConcatImpl_cpu::backward() { printf("Not implemented yet.\n"); } \ No newline at end of file diff --git a/src/operator/ConvDepthWiseImpl.cpp b/src/operator/ConvDepthWiseImpl.cpp index 0a0b2dfe..4a722a5e 100644 --- a/src/operator/ConvDepthWiseImpl.cpp +++ b/src/operator/ConvDepthWiseImpl.cpp @@ -31,7 +31,7 @@ void Aidge::ConvDepthWiseImpl2D_cpu::forward() { assert(mOp.getRawInput(1) && "missing input #1"); assert(mOp.getRawInput(2) && "missing input #2"); - assert((mOp.getRawInput(0)->nbDims() == 4) && "support for 4-dimensions tensors only"); + assert((std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims() == 4) && "support for 4-dimensions tensors only"); // Find the correct kernel type auto kernelFunc = @@ -41,7 +41,7 @@ void Aidge::ConvDepthWiseImpl2D_cpu::forward() { std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const ConvDepthWise_Op<2>&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims<4>(), + kernelFunc(dynamic_cast<const ConvDepthWise_Op<2>&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->getImpl()->rawPtr(), diff --git a/src/operator/ConvImpl.cpp b/src/operator/ConvImpl.cpp index e3a47ed9..87b54afb 100644 --- a/src/operator/ConvImpl.cpp +++ b/src/operator/ConvImpl.cpp @@ -40,7 +40,7 @@ void Aidge::ConvImpl2D_cpu::forward() { std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(dynamic_cast<const Conv_Op<2>&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims<4>(), + kernelFunc(dynamic_cast<const Conv_Op<2>&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/DivImpl.cpp b/src/operator/DivImpl.cpp index 346b6d2c..2e913df1 100644 --- a/src/operator/DivImpl.cpp +++ b/src/operator/DivImpl.cpp @@ -27,15 +27,6 @@ Aidge::NbElts_t Aidge::DivImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_ } void Aidge::DivImpl_cpu::forward() { - assert(mOp.getRawInput(0) && "missing input #0"); - assert(mOp.getRawInput(1) && "missing input #1"); - - assert(((std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == 1) || - (std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size()) || - (std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->nbDims() == 1 && std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims()[std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims()-1]) - ) && - "input #1 must either be a tensor of size 1, the number of channels of input # or the same size of input #0"); - // Find the correct kernel type auto kernelFunc = Registrar<DivImplForward_cpu>::create({ std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), diff --git a/src/operator/FCImpl.cpp b/src/operator/FCImpl.cpp index 159769a5..1e5450d3 100644 --- a/src/operator/FCImpl.cpp +++ b/src/operator/FCImpl.cpp @@ -38,7 +38,7 @@ void Aidge::FCImpl_cpu::forward() // if (std::static_pointer_cast<Tensor>(mOp.getRawInput(0)->nbDims() == 4) { // kernelFunc( // mOp.getStaticAttributes(), - // std::static_pointer_cast<Tensor>(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims<4>(), + // std::static_pointer_cast<Tensor>(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), // std::static_pointer_cast<Tensor>(mOp.getRawInput(0)->getImpl()->rawPtr(), // mOp.mInputs[1]->getImpl()->rawPtr(), // mOp.mInputs[2]->getImpl()->rawPtr(), diff --git a/src/operator/MatMulImpl.cpp b/src/operator/MatMulImpl.cpp index f47447a8..0ad9bd6c 100644 --- a/src/operator/MatMulImpl.cpp +++ b/src/operator/MatMulImpl.cpp @@ -36,7 +36,7 @@ void Aidge::MatMulImpl_cpu::forward() // if (mOp.getInput(0)->nbDims() == 4) { // kernelFunc( // mOp.getStaticAttributes(), - // std::static_pointer_cast<Tensor>(mOp.getInput(0))->dims<4>(), + // std::static_pointer_cast<Tensor>(mOp.getInput(0))->template dims<4>(), // mOp.getInput(0))->getImpl()->rawPtr(), // mOp.mInputs[1]->getImpl()->rawPtr(), // mOp.mInputs[2]->getImpl()->rawPtr(), diff --git a/src/operator/MaxPoolingImpl.cpp b/src/operator/MaxPoolingImpl.cpp index 77bc5e31..00a27970 100644 --- a/src/operator/MaxPoolingImpl.cpp +++ b/src/operator/MaxPoolingImpl.cpp @@ -34,7 +34,7 @@ void Aidge::MaxPoolingImpl2D_cpu::forward() { // Call kernel kernelFunc(dynamic_cast<const MaxPooling_Op<2>&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/MulImpl.cpp b/src/operator/MulImpl.cpp index f72e09fd..dfd33445 100644 --- a/src/operator/MulImpl.cpp +++ b/src/operator/MulImpl.cpp @@ -27,15 +27,6 @@ Aidge::NbElts_t Aidge::MulImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_ } void Aidge::MulImpl_cpu::forward() { - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(1)) && "missing input #1"); - - assert(((std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == 1) || - (std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size()) || - (std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->nbDims() == 1 && std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims()[std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims()-1]) - ) && - "input #1 must either be a tensor of size 1, the number of channels of input # or the same size of input #0"); - // Find the correct kernel type auto kernelFunc = Registrar<MulImplForward_cpu>::create({ std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), @@ -43,8 +34,8 @@ void Aidge::MulImpl_cpu::forward() { std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel - kernelFunc(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(), - std::static_pointer_cast<Tensor>(mOp.getInput(1))->size(), + kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); diff --git a/src/operator/PadImpl.cpp b/src/operator/PadImpl.cpp index 353d11ac..a5bf1c52 100644 --- a/src/operator/PadImpl.cpp +++ b/src/operator/PadImpl.cpp @@ -41,7 +41,7 @@ void Aidge::PadImpl2D_cpu::forward() { // Call kernel kernelFunc(dynamic_cast<const Pad_Op<2>&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/PowImpl.cpp b/src/operator/PowImpl.cpp index 57856543..30fafa9b 100644 --- a/src/operator/PowImpl.cpp +++ b/src/operator/PowImpl.cpp @@ -27,15 +27,6 @@ Aidge::NbElts_t Aidge::PowImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_ } void Aidge::PowImpl_cpu::forward() { - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(1)) && "missing input #1"); - - assert(((std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == 1) || - (std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size()) || - (std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->nbDims() == 1 && std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims()[std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims()-1]) - ) && - "input #1 must either be a tensor of size 1, the number of channels of input # or the same size of input #0"); - // Find the correct kernel type auto kernelFunc = Registrar<PowImplForward_cpu>::create({ std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), @@ -47,5 +38,5 @@ void Aidge::PowImpl_cpu::forward() { std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->getImpl()->rawPtr(), - std::static_pointer_cast<Tensor>(mOp.getOutput(0))->getImpl()->rawPtr()); + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/ProducerImpl.cpp b/src/operator/ProducerImpl.cpp index 404d95ef..827f969e 100644 --- a/src/operator/ProducerImpl.cpp +++ b/src/operator/ProducerImpl.cpp @@ -26,7 +26,7 @@ Aidge::DimSize_t Aidge::ProducerImpl_cpu::getNbProducedData( assert(outputIdx == 0 && "operator has only one output"); (void) outputIdx; - return std::static_pointer_cast<Tensor>(mOp.getOutput(0))->size(); + return std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->size(); } void Aidge::ProducerImpl_cpu::forward() diff --git a/src/operator/ReLUImpl.cpp b/src/operator/ReLUImpl.cpp index 1c00d00c..2819bb86 100644 --- a/src/operator/ReLUImpl.cpp +++ b/src/operator/ReLUImpl.cpp @@ -32,7 +32,7 @@ void Aidge::ReLUImpl_cpu::forward() { // Find the correct kernel type auto kernelFunc = Registrar<ReLUImplForward_cpu>::create({ std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), - std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dataType()}); + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); // Call kernel kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), diff --git a/src/operator/ScalingImpl.cpp b/src/operator/ScalingImpl.cpp index 03411d90..c2d2b172 100644 --- a/src/operator/ScalingImpl.cpp +++ b/src/operator/ScalingImpl.cpp @@ -35,7 +35,7 @@ void Aidge::ScalingImpl_cpu::forward() { // Call kernel kernelFunc(dynamic_cast<const Scaling_Op&>(mOp).getStaticAttributes(), - std::static_pointer_cast<Tensor>(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr()); } diff --git a/src/operator/SliceImpl.cpp b/src/operator/SliceImpl.cpp index 4baaef60..3ae56e1a 100644 --- a/src/operator/SliceImpl.cpp +++ b/src/operator/SliceImpl.cpp @@ -24,10 +24,10 @@ Aidge::NbElts_t Aidge::SliceImpl_cpu<1>::getNbRequiredData(const Aidge::IOIndex_t /*inputIdx*/) const { - assert(mOp.getInput(0) && "requires valid input"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "requires valid input"); // Requires the whole tensors - return mOp.getInput(0)->dims<1>()[0]; + return std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<1>()[0]; } Aidge::NbElts_t Aidge::SliceImpl_cpu<1>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const { return 0; } @@ -36,7 +36,7 @@ Aidge::NbElts_t Aidge::SliceImpl_cpu<1>::getRequiredMemory(const Aidge::IOIndex_ const std::vector<Aidge::DimSize_t>& inputsSize) const { (void)outputIdx; (void)inputsSize; - return mOp.getOutput(0)->dims<1>()[0]; + return std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->template dims<1>()[0]; } Aidge::NbElts_t Aidge::SliceImpl_cpu<1>::getNbConsumedData(const Aidge::IOIndex_t /*inputIdx*/) const { @@ -56,17 +56,17 @@ void Aidge::SliceImpl_cpu<1>::updateConsummerProducer() { void Aidge::SliceImpl_cpu<1>::forward() { // FIXME: uncomment the following code once memory handling will work - assert(mOp.getInput(0) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = Registrar<SliceImplForward_cpu<1>>::create( - {mOp.getInput(0)->dataType()}); + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType()}); // Call kernel - kernelFunc(mOp.getStaticAttributes(), - mOp.getInput(0)->template dims<1>(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr() + kernelFunc(dynamic_cast<const Slice_Op<1>&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<1>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr() ); // each input is consumed by the minimum amount for a forward pass @@ -80,10 +80,10 @@ void Aidge::SliceImpl_cpu<1>::backward() { printf("Not implemented yet.\n"); } ///////////////////////////////////////////////////////////////////////// Aidge::NbElts_t Aidge::SliceImpl_cpu<2>::getNbRequiredData(const Aidge::IOIndex_t /*inputIdx*/) const { - assert(mOp.getInput(0) && "requires valid input"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "requires valid input"); // Requires the whole tensors - const auto& inputDims = mOp.getInput(0)->dims<2>(); + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<2>(); return inputDims[0]*inputDims[1]; } @@ -93,7 +93,7 @@ Aidge::NbElts_t Aidge::SliceImpl_cpu<2>::getRequiredMemory(const Aidge::IOIndex_ const std::vector<Aidge::DimSize_t>& inputsSize) const { (void)outputIdx; (void)inputsSize; - const auto& outputDims = mOp.getOutput(0)->dims<2>(); + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->template dims<2>(); return outputDims[0]*outputDims[1]; } @@ -114,17 +114,17 @@ void Aidge::SliceImpl_cpu<2>::updateConsummerProducer() { void Aidge::SliceImpl_cpu<2>::forward() { // FIXME: uncomment the following code once memory handling will work - assert(mOp.getInput(0) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = Registrar<SliceImplForward_cpu<2>>::create( - {mOp.getInput(0)->dataType()}); + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType()}); // Call kernel - kernelFunc(mOp.getStaticAttributes(), - mOp.getInput(0)->template dims<2>(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr() + kernelFunc(dynamic_cast<const Slice_Op<2>&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<2>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr() ); // each input is consumed by the minimum amount for a forward pass @@ -138,10 +138,10 @@ void Aidge::SliceImpl_cpu<2>::backward() { printf("Not implemented yet.\n"); } //////////////////////////////////////////////////////////////////////////// Aidge::NbElts_t Aidge::SliceImpl_cpu<3>::getNbRequiredData(const Aidge::IOIndex_t /*inputIdx*/) const { - assert(mOp.getInput(0) && "requires valid input"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "requires valid input"); // Requires the whole tensors - const auto& inputDims = mOp.getInput(0)->dims<3>(); + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<3>(); return std::accumulate(inputDims.begin(), inputDims.end(), static_cast<NbElts_t>(1), std::multiplies<NbElts_t>()); @@ -153,7 +153,7 @@ Aidge::NbElts_t Aidge::SliceImpl_cpu<3>::getRequiredMemory(const Aidge::IOIndex_ const std::vector<Aidge::DimSize_t>& inputsSize) const { (void)outputIdx; (void)inputsSize; - const auto& outputDims = mOp.getOutput(0)->dims<3>(); + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->template dims<3>(); return std::accumulate(outputDims.begin(), outputDims.end(), static_cast<NbElts_t>(1), std::multiplies<NbElts_t>()); } @@ -175,17 +175,17 @@ void Aidge::SliceImpl_cpu<3>::updateConsummerProducer() { void Aidge::SliceImpl_cpu<3>::forward() { // FIXME: uncomment the following code once memory handling will work - assert(mOp.getInput(0) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = Registrar<SliceImplForward_cpu<3>>::create( - {mOp.getInput(0)->dataType()}); + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType()}); // Call kernel - kernelFunc(mOp.getStaticAttributes(), - mOp.getInput(0)->template dims<3>(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr() + kernelFunc(dynamic_cast<const Slice_Op<3>&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<3>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr() ); // each input is consumed by the minimum amount for a forward pass @@ -199,10 +199,10 @@ void Aidge::SliceImpl_cpu<3>::backward() { printf("Not implemented yet.\n"); } ////////////////////////////////////////////////////////////////////////////// Aidge::NbElts_t Aidge::SliceImpl_cpu<4>::getNbRequiredData(const Aidge::IOIndex_t /*inputIdx*/) const { - assert(mOp.getInput(0) && "requires valid input"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "requires valid input"); // Requires the whole tensors - const auto& inputDims = mOp.getInput(0)->dims<4>(); + const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(); return std::accumulate(inputDims.begin(), inputDims.end(), static_cast<NbElts_t>(1), std::multiplies<NbElts_t>()); @@ -214,7 +214,7 @@ Aidge::NbElts_t Aidge::SliceImpl_cpu<4>::getRequiredMemory(const Aidge::IOIndex_ const std::vector<Aidge::DimSize_t>& inputsSize) const { (void)outputIdx; (void)inputsSize; - const auto& outputDims = mOp.getOutput(0)->template dims<4>(); + const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->template dims<4>(); return std::accumulate(outputDims.begin(), outputDims.end(), static_cast<NbElts_t>(1), std::multiplies<NbElts_t>()); } @@ -236,17 +236,17 @@ void Aidge::SliceImpl_cpu<4>::updateConsummerProducer() { void Aidge::SliceImpl_cpu<4>::forward() { // FIXME: uncomment the following code once memory handling will work - assert(mOp.getInput(0) && "missing input #0"); + assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); // Find the correct kernel type auto kernelFunc = Registrar<SliceImplForward_cpu<4>>::create( - {mOp.getInput(0)->dataType()}); + {std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType()}); // Call kernel - kernelFunc(mOp.getStaticAttributes(), - mOp.getInput(0)->template dims<4>(), - mOp.getInput(0)->getImpl()->rawPtr(), - mOp.getOutput(0)->getImpl()->rawPtr() + kernelFunc(dynamic_cast<const Slice_Op<4>&>(mOp).getStaticAttributes(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(), + std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(), + std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr() ); // each input is consumed by the minimum amount for a forward pass diff --git a/src/operator/SubImpl.cpp b/src/operator/SubImpl.cpp index 6fbe0cda..7d33d935 100644 --- a/src/operator/SubImpl.cpp +++ b/src/operator/SubImpl.cpp @@ -27,14 +27,6 @@ Aidge::NbElts_t Aidge::SubImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_ } void Aidge::SubImpl_cpu::forward() { - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0"); - assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(1)) && "missing input #1"); - - assert(((std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == 1) || - (std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size()) || - (std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->nbDims() == 1 && std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size() == std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims()[std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims()-1]) - ) && - "input #1 must either be a tensor of size 1, the number of channels of input # or the same size of input #0"); // Find the correct kernel type auto kernelFunc = Registrar<SubImplForward_cpu>::create({ -- GitLab