diff --git a/unit_tests/operator/Test_ConvImpl.cpp b/unit_tests/operator/Test_ConvImpl.cpp
index 7b14546351e1eb61af1063a5b98aa16fcebdd029..6a49a7995e4827294466e10b1347e81a79478f6a 100644
--- a/unit_tests/operator/Test_ConvImpl.cpp
+++ b/unit_tests/operator/Test_ConvImpl.cpp
@@ -1986,39 +1986,17 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
 
             auto input = std::make_shared<Tensor>(
                 Array3D<float, batchSize, inChannels, inDataSize>(
-                    {{{{1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000},
-                       {1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000,
-                        1.000000}}}}));
+                    {{{{1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.}, 
+                       {1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.}}}}));
 
             auto weights = std::make_shared<Tensor>(
                 Array3D<float, outChannels, inChannels, kernelSize>(
-                    {{{{0.100000, 0.100000, 0.100000, 0.100000},
-                       {0.100000, 0.100000, 0.100000, 0.100000}},
-                      {{0.100000, 0.100000, 0.100000, 0.100000},
-                       {0.100000, 0.100000, 0.100000, 0.100000}},
-                      {{0.100000, 0.100000, 0.100000, 0.100000},
-                       {0.100000, 0.100000, 0.100000, 0.100000}}}
+                    {{{{0.1, 0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1, 0.1}},
+                      {{0.1, 0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1, 0.1}},
+                      {{0.1, 0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1, 0.1}}}
 
                     }));
 
@@ -2054,30 +2032,8 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
             SECTION("Input Grad") {
                 auto expectedInputGrad = std::make_shared<Tensor>(
                     Array3D<float, batchSize, inChannels, inDataSize>(
-                        {{{{0.3000,
-                            0.6000,
-                            0.9000,
-                            1.2000,
-                            1.2000,
-                            1.2000,
-                            1.2000,
-                            1.2000,
-                            1.2000,
-                            0.9000,
-                            0.6000,
-                            0.3000},
-                           {0.3000,
-                            0.6000,
-                            0.9000,
-                            1.2000,
-                            1.2000,
-                            1.2000,
-                            1.2000,
-                            1.2000,
-                            1.2000,
-                            0.9000,
-                            0.6000,
-                            0.3000}}}}));
+                        {{{{0.3, 0.6, 0.9, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 0.9, 0.6, 0.3}, 
+                           {0.3, 0.6, 0.9, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 0.9, 0.6, 0.3}}}}));
                 CHECK(approxEq<float, float>(*op->getInput(0)->grad(),
                                              *expectedInputGrad));
             }
@@ -2128,9 +2084,9 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
                        {1., 1., 1., 1., 1., 1., 1., 1.}}}}));
             auto weights = std::make_shared<Tensor>(
                 Array3D<float, outChannels, inChannels, kernelSize>(
-                    {{{{0.1000, 0.1000},
-                       {0.1000, 0.1000},
-                       {0.1000, 0.1000}}}}));
+                    {{{{0.1, 0.1},
+                       {0.1, 0.1},
+                       {0.1, 0.1}}}}));
 
             auto biases = std::make_shared<Tensor>(
                 Array1D<float, outChannels>({0.060000}));
@@ -2164,55 +2120,13 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
             SECTION("Input Grad") {
                 auto expectedInputGrad = std::make_shared<Tensor>(
                     Array3D<float, batchSize, inChannels, inDataSize>(
-                        {{{{0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000},
-                           {0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000},
-                           {0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000}},
-
-                          {{0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000},
-                           {0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000},
-                           {0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000,
-                            0.0000,
-                            0.1000,
-                            0.1000}}}}));
+                        {{{{0.1, 0.1, 0.0, 0.1, 0.1, 0.0, 0.1, 0.1}, 
+                           {0.1, 0.1, 0.0, 0.1, 0.1, 0.0, 0.1, 0.1}, 
+                           {0.1, 0.1, 0.0, 0.1, 0.1, 0.0, 0.1, 0.1}}, 
+
+                          {{0.1, 0.1, 0.0, 0.1, 0.1, 0.0, 0.1, 0.1}, 
+                           {0.1, 0.1, 0.0, 0.1, 0.1, 0.0, 0.1, 0.1}, 
+                           {0.1, 0.1, 0.0, 0.1, 0.1, 0.0, 0.1, 0.1}}}}));
                 CHECK(approxEq<float, float>(*op->getInput(0)->grad(),
                                              *expectedInputGrad));
             }
@@ -2256,12 +2170,12 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
                        {1., 1., 1., 1., 1., 1., 1., 1.}}}}));
             auto weights = std::make_shared<Tensor>(
                 Array3D<float, outChannels, inChannels, kernelSize>(
-                    {{{{0.1000, 0.1000},
-                       {0.1000, 0.1000},
-                       {0.1000, 0.1000}}}}));
+                    {{{{0.1, 0.1},
+                       {0.1, 0.1},
+                       {0.1, 0.1}}}}));
 
             auto biases = std::make_shared<Tensor>(
-                Array1D<float, outChannels>({0.060000}));
+                Array1D<float, outChannels>({0.06}));
 
             auto op = setupTestConv<DIM>(
                 batchSize,
@@ -2292,55 +2206,13 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
             SECTION("Input Grad") {
                 auto expectedInputGrad = std::make_shared<Tensor>(
                     Array3D<float, batchSize, inChannels, inDataSize>(
-                        {{{{0.1000,
-                            0.1000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.1000,
-                            0.1000},
-                           {0.1000,
-                            0.1000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.1000,
-                            0.1000},
-                           {0.1000,
-                            0.1000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.1000,
-                            0.1000}},
-
-                          {{0.1000,
-                            0.1000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.1000,
-                            0.1000},
-                           {0.1000,
-                            0.1000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.1000,
-                            0.1000},
-                           {0.1000,
-                            0.1000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.2000,
-                            0.1000,
-                            0.1000}}}}));
+                        {{{{0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1}, 
+                           {0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1}, 
+                           {0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1}}, 
+
+                          {{0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1}, 
+                           {0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1}, 
+                           {0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1}}}}));
                 CHECK(approxEq<float, float>(*op->getInput(0)->grad(),
                                              *expectedInputGrad));
             }
@@ -2380,28 +2252,28 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
                    {1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.}}}}));
             auto weights = std::make_shared<Tensor>(
                 Array3D<float, outChannels, inChannels, kernelSize>(
-                    {{{{0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000}},
-
-                      {{0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000}},
-
-                      {{0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000}},
-
-                      {{0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000},
-                       {0.1000, 0.1000, 0.1000}}}}));
+                    {{{{0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1}},
+
+                      {{0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1}},
+
+                      {{0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1}},
+
+                      {{0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1},
+                       {0.1, 0.1, 0.1}}}}));
 
             auto biases = std::make_shared<Tensor>(Array1D<float, outChannels>(
-                {{0.0100, 0.0100, 0.0100, 0.0100}}));
+                {{0.01, 0.01, 0.01, 0.01}}));
 
             auto op = setupTestConv<DIM>(
                 batchSize,
@@ -2432,58 +2304,10 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
             SECTION("Input Grad") {
                 auto expectedInputGrad = std::make_shared<Tensor>(
                     Array3D<float, batchSize, inChannels, inDataSize>(
-                        {{{{0.4000,
-                            0.0000,
-                            0.0000,
-                            0.4000,
-                            0.4000,
-                            0.0000,
-                            0.4000,
-                            0.4000,
-                            0.0000,
-                            0.0000,
-                            0.4000,
-                            0.0000,
-                            0.0000},
-                           {0.4000,
-                            0.0000,
-                            0.0000,
-                            0.4000,
-                            0.4000,
-                            0.0000,
-                            0.4000,
-                            0.4000,
-                            0.0000,
-                            0.0000,
-                            0.4000,
-                            0.0000,
-                            0.0000},
-                           {0.4000,
-                            0.0000,
-                            0.0000,
-                            0.4000,
-                            0.4000,
-                            0.0000,
-                            0.4000,
-                            0.4000,
-                            0.0000,
-                            0.0000,
-                            0.4000,
-                            0.0000,
-                            0.0000},
-                           {0.4000,
-                            0.0000,
-                            0.0000,
-                            0.4000,
-                            0.4000,
-                            0.0000,
-                            0.4000,
-                            0.4000,
-                            0.0000,
-                            0.0000,
-                            0.4000,
-                            0.0000,
-                            0.0000}}}}));
+                        {{{{0.4,0.,0.,0.4,0.4,0.,0.4,0.4,0.,0.,0.4,0.,0.},
+                           {0.4,0.,0.,0.4,0.4,0.,0.4,0.4,0.,0.,0.4,0.,0.},
+                           {0.4,0.,0.,0.4,0.4,0.,0.4,0.4,0.,0.,0.4,0.,0.},
+                           {0.4,0.,0.,0.4,0.4,0.,0.4,0.4,0.,0.,0.4,0.,0.}}}}));
                 CHECK(approxEq<float, float>(*op->getInput(0)->grad(),
                                              *expectedInputGrad));
             }
@@ -2543,9 +2367,9 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
                        {9., 10., 11., 12., 13., 14., 15., 16.}}}}));
             auto weights = std::make_shared<Tensor>(
                 Array3D<float, outChannels, inChannels, kernelSize>(
-                    {{{{0.1000, 0.2000, 0.3000}, {0.4000, 0.5000, 0.6000}},
+                    {{{{0.1, 0.2, 0.3}, {0.4, 0.5, 0.6}},
 
-                      {{0.7000, 0.8000, 0.9000}, {1.0000, 1.1000, 1.2000}}}}));
+                      {{0.7, 0.8, 0.9}, {1.0, 1.1, 1.2}}}}));
 
             auto biases = std::make_shared<Tensor>(
                 Array1D<float, outChannels>({{0.0100, 0.0200}}));
@@ -2576,22 +2400,8 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
             SECTION("Input Grad") {
                 auto expectedInputGrad = std::make_shared<Tensor>(
                     Array3D<float, batchSize, inChannels, inDataSize>(
-                        {{{{2.2000,
-                            0.0000,
-                            5.6000,
-                            0.0000,
-                            6.6000,
-                            0.0000,
-                            4.2000,
-                            0.0000},
-                           {3.4000,
-                            0.0000,
-                            8.6000,
-                            0.0000,
-                            9.6000,
-                            0.0000,
-                            6.0000,
-                            0.0000}}}}));
+                        {{{{2.2,0.,5.6,0.,6.6,0.,4.2,0.},
+                           {3.4,0.,8.6,0.,9.6,0.,6.,0.}}}}));
                 CHECK(approxEq<float, float>(*op->getInput(0)->grad(),
                                              *expectedInputGrad));
             }
@@ -3140,18 +2950,14 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
                                                      inChannels,
                                                      inDataSize[0],
                                                      inDataSize[1],
-                                                     inDataSize[2]>({{{{{{0.100000, 0.200000},
-                                       {0.300000, 0.400000}},
-
-                                      {{0.500000, 0.600000},
-                                       {0.700000, 0.800000}}},
+                                                     inDataSize[2]>(
+                        {{{{{{0.100000, 0.200000}, {0.300000, 0.400000}},
 
+                            {{0.500000, 0.600000}, {0.700000, 0.800000}}},
 
-                                     {{{0.900000, 1.000000},
-                                       {1.100000, 1.200000}},
+                           {{{0.900000, 1.000000}, {1.100000, 1.200000}},
 
-                                      {{1.300000, 1.400000},
-                                       {1.500000, 1.600000}}}}}}));
+                            {{1.300000, 1.400000}, {1.500000, 1.600000}}}}}}));
                 CHECK(approxEq<float, float>(*op->getInput(0)->grad(),
                                              *expectedInputGrad));
             }
@@ -3162,18 +2968,15 @@ TEST_CASE("[cpu/operator] Conv(backward)", "[Conv][CPU]") {
                                                      inChannels,
                                                      kernelSize[0],
                                                      kernelSize[1],
-                                                     kernelSize[2]>({{{{{{ 1.000000,  2.000000},
-                                       { 3.000000,  4.000000}},
-
-                                      {{ 5.000000,  6.000000},
-                                       { 7.000000,  8.000000}}},
+                                                     kernelSize[2]>(
+                        {{{{{{1.000000, 2.000000}, {3.000000, 4.000000}},
 
+                            {{5.000000, 6.000000}, {7.000000, 8.000000}}},
 
-                                     {{{ 9.000000, 10.000000},
-                                       {11.000000, 12.000000}},
+                           {{{9.000000, 10.000000}, {11.000000, 12.000000}},
 
-                                      {{13.000000, 14.000000},
-                                       {15.000000, 16.000000}}}}}}));
+                            {{13.000000, 14.000000},
+                             {15.000000, 16.000000}}}}}}));
                 CHECK(approxEq<float, float>(*op->getInput(1)->grad(),
                                              *expectedWeightsGrad));
             }