diff --git a/aidge_backend_cpu/unit_tests/test_recipes.py b/aidge_backend_cpu/unit_tests/test_recipes.py
index 12d8774369af5a46cfbd30d44fc90f4f97ca9821..0e58a6b122326997f5eb8cbb39ca85fd3c261036 100644
--- a/aidge_backend_cpu/unit_tests/test_recipes.py
+++ b/aidge_backend_cpu/unit_tests/test_recipes.py
@@ -36,7 +36,7 @@ class test_recipes(unittest.TestCase):
         graph_view = aidge_core.sequential([input_node, conv, bn])
 
         # Add random values to conv and BatchNorm parameters
-        graph_view.set_datatype(aidge_core.DataType.Float32)
+        graph_view.set_datatype(aidge_core.DataType.float32)
         graph_view.set_backend("cpu")
 
         np_weights = np.arange(9).reshape([1, 1, 3, 3]).astype(np.float32)
diff --git a/aidge_backend_cpu/unit_tests/test_scheduler.py b/aidge_backend_cpu/unit_tests/test_scheduler.py
index 0c41d59963c7633151745f2efe1f1fac3ee07815..a90e38f0c8e5c6750d658ec59783fb47602dd85d 100644
--- a/aidge_backend_cpu/unit_tests/test_scheduler.py
+++ b/aidge_backend_cpu/unit_tests/test_scheduler.py
@@ -24,7 +24,7 @@ class test_scheduler(unittest.TestCase):
 
         input_node.add_child(relu)
 
-        gv.set_datatype(aidge_core.DataType.Int32)
+        gv.set_datatype(aidge_core.DataType.int32)
         gv.set_backend("cpu")
 
         scheduler = aidge_core.SequentialScheduler(gv)
@@ -48,7 +48,7 @@ class test_scheduler(unittest.TestCase):
         ])
         EXPECTED_SCHEDULE = ['0', '1', '2']
 
-        graph_view.set_datatype(aidge_core.DataType.Float32)
+        graph_view.set_datatype(aidge_core.DataType.float32)
         graph_view.set_backend("cpu")
 
         graph_view.forward_dims()
@@ -74,7 +74,7 @@ class test_scheduler(unittest.TestCase):
 
         EXPECTED_SCHEDULE = [['0', '1', '3', '2'],  ['0', '3', '1', '2']] # Both scheduling are valid !
 
-        graph_view.set_datatype(aidge_core.DataType.Float32)
+        graph_view.set_datatype(aidge_core.DataType.float32)
         graph_view.set_backend("cpu")
 
         graph_view.forward_dims()
diff --git a/include/aidge/backend/cpu/operator/AvgPoolingImpl.hpp b/include/aidge/backend/cpu/operator/AvgPoolingImpl.hpp
index ce126dc2b870d6ac767c15bc6fbca2deb07e8772..12a5dc334619c16e6ad3a77f0cd76f4db7a87b77 100644
--- a/include/aidge/backend/cpu/operator/AvgPoolingImpl.hpp
+++ b/include/aidge/backend/cpu/operator/AvgPoolingImpl.hpp
@@ -29,12 +29,20 @@ namespace Aidge {
 // compute kernel registry for forward and backward
 class AvgPoolingImpl2DForward_cpu
     : public Registrable<AvgPoolingImpl2DForward_cpu,
-                         std::tuple<DataType, DataType>,
-                         void(const AvgPooling_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, void *)> {};
+                        std::tuple<DataType, DataType>,
+                        void(const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 4>&,
+                            const void *,
+                            void *)> {};
 class AvgPoolingImpl2DBackward_cpu
     : public Registrable<AvgPoolingImpl2DBackward_cpu,
-                         std::tuple<DataType, DataType>,
-                         void(const AvgPooling_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, void *)> {};
+                        std::tuple<DataType, DataType>,
+                        void(const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 4>&,
+                            const void *,
+                            void *)> {};
 
 class AvgPoolingImpl2D_cpu : public OperatorImpl {
 public:
diff --git a/include/aidge/backend/cpu/operator/AvgPoolingImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/AvgPoolingImpl_forward_kernels.hpp
index d6950e11e935a3f6d5548148d1c393a5340af224..c7d9f86235c3bf1d7d01cf429cab29d156592fb5 100644
--- a/include/aidge/backend/cpu/operator/AvgPoolingImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/AvgPoolingImpl_forward_kernels.hpp
@@ -12,16 +12,16 @@
 #ifndef AIDGE_CPU_OPERATOR_AVGPOOLINGIMPL_FORWARD_KERNEL_H_
 #define AIDGE_CPU_OPERATOR_AVGPOOLINGIMPL_FORWARD_KERNEL_H_
 
-#include "aidge/utils/Registrar.hpp"
-
-#include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp"
-#include "aidge/utils/Types.h"
-#include "aidge/backend/cpu/data/GetCPUPtr.h"
-#include "aidge/data/Data.hpp"
 #include <array>
 #include <tuple>
 #include <cmath>
 
+#include "aidge/backend/cpu/data/GetCPUPtr.h"
+#include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp"
+#include "aidge/data/Data.hpp"
+#include "aidge/utils/Registrar.hpp"
+#include "aidge/utils/Types.h"
+
 namespace Aidge {
 /**
  * @brief Forward kernel for 2D AvgPoolingolution on CPU backend.
@@ -33,10 +33,11 @@ namespace Aidge {
  * @param output_ Output Tensor.
  */
 template <class I, class O>
-void AvgPoolingImpl2D_cpu_forward_kernel(const AvgPooling_Op<2>::Attrs &attrs,
-                                             const std::array<DimSize_t, 4> &dims,
-                                             const void *input_,
-                                             void *output_) {
+void AvgPoolingImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
+                                        const std::array<DimSize_t, 2>& kernelDims,
+                                        const std::array<DimSize_t, 4> &dims,
+                                        const void *input_,
+                                        void *output_) {
     // FIXME: missing convolution attributes as arguments
     const I *input = static_cast<const I *>(input_);
     O *output = static_cast<O *>(output_);
@@ -44,12 +45,12 @@ void AvgPoolingImpl2D_cpu_forward_kernel(const AvgPooling_Op<2>::Attrs &attrs,
 
     // output H size
     const std::size_t oxSize =
-            static_cast<std::size_t>(std::floor(static_cast<float>(dims[2] - std::get<1>(attrs)[0] + std::get<0>(attrs)[0]) /
-                                static_cast<float>(std::get<0>(attrs)[0])));
+            static_cast<std::size_t>(std::floor(static_cast<float>(dims[2] - kernelDims[0] + strideDims[0]) /
+                                static_cast<float>(strideDims[0])));
     // output W size
     const std::size_t oySize =
-            static_cast<std::size_t>(std::floor(static_cast<float>(dims[3] - std::get<1>(attrs)[1] + std::get<0>(attrs)[1]) /
-                                static_cast<float>(std::get<0>(attrs)[1])));
+            static_cast<std::size_t>(std::floor(static_cast<float>(dims[3] - kernelDims[1] + strideDims[1]) /
+                                static_cast<float>(strideDims[1])));
 
     // TODO: kernel computation
     // output (batch, outCh, Xout, Yout)
@@ -63,16 +64,16 @@ void AvgPoolingImpl2D_cpu_forward_kernel(const AvgPooling_Op<2>::Attrs &attrs,
             const std::size_t iIndex = (ch + batch*dims[1]) * dims[2] * dims[3];
             std::fill(output + oIndex, output+(oIndex+oxSize*oySize), 0);
             for (std::size_t ox = 0; ox < oxSize; ++ox) {
-                const signedsize difx = static_cast<signedsize>(- ox * std::get<0>(attrs)[0]);
+                const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]);
                 const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0)));
-                const std::size_t sxMax = (static_cast<signedsize>(dims[2]) + difx) < 0 ? 0 : ((dims[2] + difx) > std::get<1>(attrs)[0] ? std::get<1>(attrs)[0] : dims[2] + difx);
+                const std::size_t sxMax = (static_cast<signedsize>(dims[2]) + difx) < 0 ? 0 : ((dims[2] + difx) > kernelDims[0] ? kernelDims[0] : dims[2] + difx);
                 for (std::size_t oy = 0; oy < oySize; ++oy) {
-                    const signedsize dify = static_cast<signedsize>(- oy * std::get<0>(attrs)[1]);
+                    const signedsize dify = static_cast<signedsize>(- oy * strideDims[1]);
                     const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0)));
-                    const std::size_t syMax = (static_cast<signedsize>(dims[3]) + dify) < 0 ? 0 : ((dims[3] + dify) > std::get<1>(attrs)[1] ? std::get<1>(attrs)[1] : dims[3] + dify);
+                    const std::size_t syMax = (static_cast<signedsize>(dims[3]) + dify) < 0 ? 0 : ((dims[3] + dify) > kernelDims[1] ? kernelDims[1] : dims[3] + dify);
                     const std::size_t oIndexFull = oIndex + ox*oySize + oy;
-                    const std::size_t ix = ox * std::get<0>(attrs)[0];
-                    const std::size_t iy = oy * std::get<0>(attrs)[1];
+                    const std::size_t ix = ox * strideDims[0];
+                    const std::size_t iy = oy * strideDims[1];
 
                     if (sxMin == 0 && syMin == 0 && sxMax == 3 && syMax == 3) {
                         output[oIndexFull] += static_cast<O>(
diff --git a/include/aidge/backend/cpu/operator/BatchNormImpl.hpp b/include/aidge/backend/cpu/operator/BatchNormImpl.hpp
index 8bd567dab3d564ccdeffdc581585e404fc4697a4..93bdab2d3f37e3bd8dc1e68ab68a05de8c8015ed 100644
--- a/include/aidge/backend/cpu/operator/BatchNormImpl.hpp
+++ b/include/aidge/backend/cpu/operator/BatchNormImpl.hpp
@@ -30,26 +30,28 @@ namespace Aidge {
 class BatchNormImpl2DForward_cpu
     : public Registrable<BatchNormImpl2DForward_cpu,
                          std::tuple<DataType, DataType, DataType>,
-                         void(const BatchNorm_Op<2>::Attrs &,
-                              const std::array<DimSize_t, 4> &,
-                              const void *,
-                              const void *,
-                              const void *,
-                              void *,
-                              void *,
-                              void *,
-                              const bool)> {};
+                         void(float,
+                            float,
+                            const std::array<DimSize_t, 4> &,
+                            const void *,
+                            const void *,
+                            const void *,
+                            void *,
+                            void *,
+                            void *,
+                            const bool)> {};
 class BatchNormImpl2DBackward_cpu
     : public Registrable<BatchNormImpl2DBackward_cpu,
                          std::tuple<DataType, DataType, DataType>,
-                         void(const BatchNorm_Op<2>::Attrs &,
-                              const std::array<DimSize_t, 4> &,
-                              const void *,
-                              const void *,
-                              const void *,
-                              void *,
-                              void *,
-                              void *)> {};
+                         void(float,
+                            float,
+                            const std::array<DimSize_t, 4> &,
+                            const void *,
+                            const void *,
+                            const void *,
+                            void *,
+                            void *,
+                            void *)> {};
 
 class BatchNormImpl2D_cpu : public OperatorImpl {
 public:
diff --git a/include/aidge/backend/cpu/operator/BatchNormImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/BatchNormImpl_forward_kernels.hpp
index cfde6ebe7cab8cfe2f793723983c8552bd9747b8..19f232a783bccf0a800d41f2bc566ccf6e04f05e 100644
--- a/include/aidge/backend/cpu/operator/BatchNormImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/BatchNormImpl_forward_kernels.hpp
@@ -38,7 +38,7 @@ namespace Aidge {
  * @param output_ Output Tensor.
  */
 template <class I, class P, class O>
-void BatchNormImpl2D_cpu_forward_kernel(const BatchNorm_Op<2>::Attrs &attrs, const std::array<DimSize_t, 4> &dims,
+void BatchNormImpl2D_cpu_forward_kernel(float epsilon, float momentum, const std::array<DimSize_t, 4> &dims,
                                        const void *input_, const void *scale_, const void *shift_, void *batchMean_, void *batchVar_, void *output_, const bool freeze) {
     // FIXME: missing convolution attributes as arguments
     const I *input = static_cast<const I *>(input_);
@@ -53,12 +53,12 @@ void BatchNormImpl2D_cpu_forward_kernel(const BatchNorm_Op<2>::Attrs &attrs, con
     const DimSize_t featureMapSize = dims[2]*dims[3];
 
 
-    if ((freeze == true) || (std::get<1>(attrs) == 0.0f)) {
+    if ((freeze == true) || (momentum == 0.0f)) {
         for (std::size_t batch = 0; batch < nbBatch; ++batch) {
             for (std::size_t ch = 0; ch < nbChannels; ++ch) {
                 const std::size_t ioIndex = (ch + batch*nbChannels) * featureMapSize;
                 std::fill(output + ioIndex, output + ioIndex + featureMapSize, shift[ch]);
-                const P var = std::sqrt(batchVar[ch] + static_cast<P>(std::get<0>(attrs)));
+                const P var = std::sqrt(batchVar[ch] + static_cast<P>(epsilon));
 
                 for (std::size_t feature = 0; feature<featureMapSize; ++feature) {
                     output[ioIndex + feature] += scale[ch] * (input[ioIndex + feature]-batchMean[ch]) / var;
@@ -82,10 +82,10 @@ void BatchNormImpl2D_cpu_forward_kernel(const BatchNorm_Op<2>::Attrs &attrs, con
             const I inputMean = sum / static_cast<I>(nbDataPerChannel);
             const I inputVar = sumSquare / static_cast<I>(nbDataPerChannel)  - inputMean*inputMean;
 
-            batchMean[ch] = batchMean[ch]*(1-std::get<1>(attrs)) + inputMean*std::get<1>(attrs);
-            batchVar[ch] = batchVar[ch]*(1-std::get<1>(attrs)) + inputVar*(static_cast<I>(nbDataPerChannel)/static_cast<I>(nbDataPerChannel-1))*std::get<1>(attrs);
+            batchMean[ch] = batchMean[ch]*(1-momentum) + inputMean*momentum;
+            batchVar[ch] = batchVar[ch]*(1-momentum) + inputVar*(static_cast<I>(nbDataPerChannel)/static_cast<I>(nbDataPerChannel-1))*momentum;
 
-            const P var = std::sqrt(inputVar + static_cast<P>(std::get<0>(attrs)));
+            const P var = std::sqrt(inputVar + static_cast<P>(epsilon));
             for (std::size_t batch = 0; batch < nbBatch; ++batch) {
                 const std::size_t ioIndex = (ch + batch*nbChannels) * featureMapSize;
                 for (std::size_t feature = 0; feature<featureMapSize; ++feature) {
diff --git a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp
index a61a7299ed6bd5c5a3e41c09e9d5b5f1f7ae3326..0a78564707ee13d5ec5e55902e1b52c1cf9c13d4 100644
--- a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp
+++ b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp
@@ -30,13 +30,27 @@ namespace Aidge {
 class ConvDepthWiseImpl2DForward_cpu
     : public Registrable<ConvDepthWiseImpl2DForward_cpu,
                          std::tuple<DataType, DataType, DataType, DataType>,
-                         void(const ConvDepthWise_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *,
-                              const void *, const void *, void *)> {};
+                         void(const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            bool,
+                            const std::array<DimSize_t, 4> &,
+                            const void *,
+                            const void *,
+                            const void *,
+                            void *)> {};
 class ConvDepthWiseImpl2DBackward_cpu
     : public Registrable<ConvDepthWiseImpl2DBackward_cpu,
                          std::tuple<DataType, DataType, DataType, DataType>,
-                         void(const ConvDepthWise_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *,
-                              const void *, const void *, void *)> {};
+                         void(const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            bool,
+                            const std::array<DimSize_t, 4> &,
+                            const void *,
+                            const void *,
+                            const void *,
+                            void *)> {};
 
 class ConvDepthWiseImpl2D_cpu : public OperatorImpl {
 public:
diff --git a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp
index 720e331cafec570af73c355dda73ed85d435fa6c..4f05ff9a2fb53f174b4131d4913858f4afe7c691 100644
--- a/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp
@@ -37,8 +37,16 @@ namespace Aidge {
  * @param output_ Output Tensor.
  */
 template <class I, class W, class B, class O>
-void ConvDepthWiseImpl2D_cpu_forward_kernel(const ConvDepthWise_Op<2>::Attrs &attrs, const std::array<DimSize_t, 4> &inputDims,
-                                       const void *input_, const void *weights_, const void *biases_, void *output_) {
+void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
+                            const std::array<DimSize_t, 2>& /*dilationDims*/,
+                            const std::array<DimSize_t, 2>& kernelDims,
+                            bool noBias,
+                            const std::array<DimSize_t, 4> &inputDims,
+                            const void *input_,
+                            const void *weights_,
+                            const void *biases_,
+                            void *output_)
+{
     // FIXME: missing convolution attributes as arguments
     const I *input = static_cast<const I *>(input_);
     const W *weights = static_cast<const W *>(weights_);
@@ -48,12 +56,12 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const ConvDepthWise_Op<2>::Attrs &at
 
     // output H size
     const std::size_t oxSize =
-            static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - std::get<2>(attrs)[0] + std::get<0>(attrs)[0]) /
-                                static_cast<float>(std::get<0>(attrs)[0])));
+            static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - kernelDims[0] + strideDims[0]) /
+                                static_cast<float>(strideDims[0])));
     // output W size
     const std::size_t oySize =
-            static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[3] - std::get<2>(attrs)[1] + std::get<0>(attrs)[1]) /
-                                static_cast<float>(std::get<0>(attrs)[1])));
+            static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[3] - kernelDims[1] + strideDims[1]) /
+                                static_cast<float>(strideDims[1])));
 
     // TODO: kernel computation
     // output (batch, outCh, Xout, Yout)
@@ -64,36 +72,36 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const ConvDepthWise_Op<2>::Attrs &at
     for (std::size_t batch = 0; batch < inputDims[0]; ++batch) {
         for (std::size_t ch = 0; ch < inputDims[1]; ++ch) {
             const std::size_t oIndex = (ch + batch*inputDims[1]) * oxSize * oySize;
-            B biasVal = ((!std::get<3>(attrs)) && biases != nullptr) ? biases[ch] : B(0);
+            B biasVal = ((!noBias) && biases != nullptr) ? biases[ch] : B(0);
             std::fill(output + oIndex, output+(oIndex+oxSize*oySize), biasVal);
             const std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2] * inputDims[3];
-            const std::size_t wIndex = ch * std::get<2>(attrs)[0] * std::get<2>(attrs)[1];
+            const std::size_t wIndex = ch * kernelDims[0] * kernelDims[1];
             for (std::size_t ox = 0; ox < oxSize; ++ox) {
-                const signedsize difx = static_cast<signedsize>(- ox * std::get<0>(attrs)[0]);
+                const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]);
                 const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0)));
-                const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > std::get<2>(attrs)[0] ? std::get<2>(attrs)[0] : inputDims[2] + difx);
+                const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx);
                 for (std::size_t oy = 0; oy < oySize; ++oy) {
-                    const signedsize dify = static_cast<signedsize>(- oy * std::get<0>(attrs)[1]);
+                    const signedsize dify = static_cast<signedsize>(- oy * strideDims[1]);
                     const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0)));
-                    const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > std::get<2>(attrs)[1] ? std::get<2>(attrs)[1] : inputDims[3] + dify);
+                    const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > kernelDims[1] ? kernelDims[1] : inputDims[3] + dify);
                     const std::size_t oIndexFull = oIndex + ox*oySize + oy;
-                    const signedsize ix = static_cast<signedsize>(ox * std::get<0>(attrs)[0]);
-                    const signedsize iy = static_cast<signedsize>(oy * std::get<0>(attrs)[1]);
+                    const signedsize ix = static_cast<signedsize>(ox * strideDims[0]);
+                    const signedsize iy = static_cast<signedsize>(oy * strideDims[1]);
 
                     if (sxMin == 0 && syMin == 0 && sxMax == 3 && syMax == 3) {
-                        output[oIndexFull] +=  (weights[wIndex + 0*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
-                                                weights[wIndex + 0*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
-                                                weights[wIndex + 0*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] +
-                                                weights[wIndex + 1*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
-                                                weights[wIndex + 1*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
-                                                weights[wIndex + 1*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] +
-                                                weights[wIndex + 2*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
-                                                weights[wIndex + 2*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
-                                                weights[wIndex + 2*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]);
+                        output[oIndexFull] +=  (weights[wIndex + 0*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
+                                                weights[wIndex + 0*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
+                                                weights[wIndex + 0*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] +
+                                                weights[wIndex + 1*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
+                                                weights[wIndex + 1*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
+                                                weights[wIndex + 1*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] +
+                                                weights[wIndex + 2*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
+                                                weights[wIndex + 2*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
+                                                weights[wIndex + 2*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]);
                     } else {
                         for (std::size_t sx = sxMin; sx < sxMax; ++sx) {
                             for (std::size_t sy = syMin; sy < syMax; ++sy) {
-                                output[oIndexFull] += weights[wIndex + sx*std::get<2>(attrs)[1] + sy] *
+                                output[oIndexFull] += weights[wIndex + sx*kernelDims[1] + sy] *
                                                         input[iIndex + static_cast<std::size_t>(ix+static_cast<signedsize>(sx))*inputDims[3] + static_cast<std::size_t>(iy+static_cast<signedsize>(sy))];
                             }
                         }
@@ -110,7 +118,7 @@ static Registrar<ConvDepthWiseImpl2DForward_cpu> registrarConvDepthWiseImpl2DFor
         Aidge::ConvDepthWiseImpl2D_cpu_forward_kernel<float, float, float, float>);
 static Registrar<ConvDepthWiseImpl2DForward_cpu> registrarConvDepthWiseImpl2DForward_cpu_Int32(
         {DataType::Int32, DataType::Int32, DataType::Int32, DataType::Int32},
-        Aidge::ConvDepthWiseImpl2D_cpu_forward_kernel<int, int, int, int>);
+        Aidge::ConvDepthWiseImpl2D_cpu_forward_kernel<std::int32_t, std::int32_t, std::int32_t, std::int32_t>);
 static Registrar<ConvDepthWiseImpl2DForward_cpu> registrarConvDepthWiseImpl2DForward_cpu_Float64(
         {DataType::Float64, DataType::Float64, DataType::Float64, DataType::Float64},
         Aidge::ConvDepthWiseImpl2D_cpu_forward_kernel<double, double, double, double>);
diff --git a/include/aidge/backend/cpu/operator/ConvImpl.hpp b/include/aidge/backend/cpu/operator/ConvImpl.hpp
index 12af5860316ba0bc9f6c3eafc551037f531da6d7..f27faa4d90e133a1dcdd25607760a311fe8abdde 100644
--- a/include/aidge/backend/cpu/operator/ConvImpl.hpp
+++ b/include/aidge/backend/cpu/operator/ConvImpl.hpp
@@ -30,13 +30,28 @@ namespace Aidge {
 class ConvImpl2DForward_cpu
     : public Registrable<ConvImpl2DForward_cpu,
                          std::tuple<DataType, DataType, DataType, DataType>,
-                         void(const Conv_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, DimSize_t, const void *,
-                              const void *, const void *, void *)> {};
+                         void(const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            bool,
+                            const std::array<DimSize_t, 4> &,
+                            DimSize_t,
+                            const void *,
+                            const void *,
+                            const void *,
+                            void *)> {};
 class ConvImpl2DBackward_cpu
     : public Registrable<ConvImpl2DBackward_cpu,
                          std::tuple<DataType, DataType, DataType, DataType>,
-                         void(const Conv_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *,
-                              const void *, const void *, void *)> {};
+                         void(const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            bool,
+                            const std::array<DimSize_t, 4> &,
+                            const void *,
+                            const void *,
+                            const void *,
+                            void *)> {};
 
 class ConvImpl2D_cpu : public OperatorImpl {
    public:
diff --git a/include/aidge/backend/cpu/operator/ConvImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ConvImpl_forward_kernels.hpp
index 0f171d79ae425bb83b5f3b8f0b67d69434a85355..312344e4ea381602eb4368cb937596825caf9651 100644
--- a/include/aidge/backend/cpu/operator/ConvImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/ConvImpl_forward_kernels.hpp
@@ -37,8 +37,17 @@ namespace Aidge {
  * @param output_ Output Tensor.
  */
 template <class I, class W, class B, class O>
-void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::array<DimSize_t, 4> &inputDims, DimSize_t outChannels,
-                                       const void *input_, const void *weights_, const void *biases_, void *output_) {
+void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
+                            const std::array<DimSize_t, 2>& /*dilationDims*/,
+                            const std::array<DimSize_t, 2>& kernelDims,
+                            bool noBias,
+                            const std::array<DimSize_t, 4> &inputDims,
+                            DimSize_t outChannels,
+                            const void *input_,
+                            const void *weights_,
+                            const void *biases_,
+                            void *output_)
+{
     // FIXME: missing convolution attributes as arguments
     const I *input = static_cast<const I *>(input_);
     const W *weights = static_cast<const W *>(weights_);
@@ -47,12 +56,12 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::ar
 /*
     // output H size
     const std::size_t oxSize =
-            static_cast<std::size_t>(static_cast<float>(inputDims[0] - std::get<2>(attrs)[0] + std::get<0>(attrs)[0]) /
-                                static_cast<float>(std::get<0>(attrs)[0]));
+            static_cast<std::size_t>(static_cast<float>(inputDims[0] - kernelDims[0] + strideDims[0]) /
+                                static_cast<float>(strideDims[0]));
     // output W size
     const std::size_t oySize =
-            static_cast<std::size_t>(static_cast<float>(inputDims[1] - std::get<2>(attrs)[1] + std::get<0>(attrs)[1]) /
-                                static_cast<float>(std::get<0>(attrs)[1]));
+            static_cast<std::size_t>(static_cast<float>(inputDims[1] - kernelDims[1] + strideDims[1]) /
+                                static_cast<float>(strideDims[1]));
 
     // TODO: kernel computation
     // output (Xout, Yout, outCh, batch)
@@ -61,8 +70,8 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::ar
     // does not take Dilation attribute into account
     for (std::size_t ox = 0; ox < oxSize; ++ox) {
         for (std::size_t oy = 0; oy < oySize; ++oy) {
-            const std::size_t ix = ox * std::get<0>(attrs)[0];
-            const std::size_t iy = oy * std::get<0>(attrs)[1];
+            const std::size_t ix = ox * strideDims[0];
+            const std::size_t iy = oy * strideDims[1];
 
             for (std::size_t outCh = 0; outCh < outChannels; ++outCh) {
                 const std::size_t oIndex = inputDims[3] * (outCh + outChannels * (oy + oySize * ox));
@@ -71,10 +80,10 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::ar
                     output[oIndex + batch] = biasVal;
                 }
                 for (std::size_t inCh = 0; inCh < inputDims[2]; ++inCh) {
-                    for (std::size_t sx = 0; sx < std::get<2>(attrs)[0]; ++sx) {
-                        for (std::size_t sy = 0; sy < std::get<2>(attrs)[1]; ++sy) {
+                    for (std::size_t sx = 0; sx < kernelDims[0]; ++sx) {
+                        for (std::size_t sy = 0; sy < kernelDims[1]; ++sy) {
                             const std::size_t wIndex =
-                                    outCh + outChannels * (inCh + inputDims[2] * (sy + std::get<2>(attrs)[1] * sx));
+                                    outCh + outChannels * (inCh + inputDims[2] * (sy + kernelDims[1] * sx));
                             std::size_t iIndex = inputDims[3] * (inCh + inputDims[2] * ((iy + sy) + inputDims[1] * (ix + sx)));
                             for (std::size_t batch = 0; batch < inputDims[3]; ++batch) {
                                 output[oIndex + batch] += weights[wIndex] * input[iIndex + batch];
@@ -90,12 +99,12 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::ar
 
     // output H size
     const std::size_t oxSize =
-            static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - std::get<2>(attrs)[0] + std::get<0>(attrs)[0]) /
-                                static_cast<float>(std::get<0>(attrs)[0])));
+            static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[2] - kernelDims[0] + strideDims[0]) /
+                                static_cast<float>(strideDims[0])));
     // output W size
     const std::size_t oySize =
-            static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[3] - std::get<2>(attrs)[1] + std::get<0>(attrs)[1]) /
-                                static_cast<float>(std::get<0>(attrs)[1])));
+            static_cast<std::size_t>(std::floor(static_cast<float>(inputDims[3] - kernelDims[1] + strideDims[1]) /
+                                static_cast<float>(strideDims[1])));
 
     // TODO: kernel computation
     // output (batch, outCh, Xout, Yout)
@@ -107,37 +116,37 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Attrs &attrs, const std::ar
         for (std::size_t outCh = 0; outCh < outChannels; ++outCh) {
             const std::size_t oIndex = (outCh + batch*outChannels) * oxSize * oySize;
             // If  NoBias or bias = nullptr, set B(0)
-            B biasVal = ((!std::get<3>(attrs)) && biases != nullptr) ? biases[outCh] : B(0);
+            B biasVal = ((!noBias) && biases != nullptr) ? biases[outCh] : B(0);
             std::fill(output + oIndex, output+(oIndex+oxSize*oySize), biasVal);
             for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) {
                 const std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3];
-                const std::size_t wIndex = (inCh + outCh*inputDims[1]) * std::get<2>(attrs)[0] * std::get<2>(attrs)[1];
+                const std::size_t wIndex = (inCh + outCh*inputDims[1]) * kernelDims[0] * kernelDims[1];
                 for (std::size_t ox = 0; ox < oxSize; ++ox) {
-                    const signedsize difx = static_cast<signedsize>(- ox * std::get<0>(attrs)[0]);
+                    const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]);
                     const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0)));
-                    const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > std::get<2>(attrs)[0] ? std::get<2>(attrs)[0] : inputDims[2] + difx);
+                    const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx);
                     for (std::size_t oy = 0; oy < oySize; ++oy) {
-                        const signedsize dify = static_cast<signedsize>(- oy * std::get<0>(attrs)[1]);
+                        const signedsize dify = static_cast<signedsize>(- oy * strideDims[1]);
                         const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0)));
-                        const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > std::get<2>(attrs)[1] ? std::get<2>(attrs)[1] : inputDims[3] + dify);
+                        const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > kernelDims[1] ? kernelDims[1] : inputDims[3] + dify);
                         const std::size_t oIndexFull = oIndex + ox*oySize + oy;
-                        const signedsize ix = static_cast<signedsize>(ox * std::get<0>(attrs)[0]);
-                        const signedsize iy = static_cast<signedsize>(oy * std::get<0>(attrs)[1]);
+                        const signedsize ix = static_cast<signedsize>(ox * strideDims[0]);
+                        const signedsize iy = static_cast<signedsize>(oy * strideDims[1]);
 
                         if (sxMin == 0 && syMin == 0 && sxMax == 3 && syMax == 3) {
-                            output[oIndexFull] += (weights[wIndex + 0*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
-                                                   weights[wIndex + 0*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
-                                                   weights[wIndex + 0*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] +
-                                                   weights[wIndex + 1*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
-                                                   weights[wIndex + 1*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
-                                                   weights[wIndex + 1*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] +
-                                                   weights[wIndex + 2*std::get<2>(attrs)[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
-                                                   weights[wIndex + 2*std::get<2>(attrs)[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
-                                                   weights[wIndex + 2*std::get<2>(attrs)[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]);
+                            output[oIndexFull] += (weights[wIndex + 0*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
+                                                   weights[wIndex + 0*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
+                                                   weights[wIndex + 0*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] +
+                                                   weights[wIndex + 1*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
+                                                   weights[wIndex + 1*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
+                                                   weights[wIndex + 1*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] +
+                                                   weights[wIndex + 2*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] +
+                                                   weights[wIndex + 2*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] +
+                                                   weights[wIndex + 2*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]);
                         } else {
                             for (std::size_t sx = sxMin; sx < sxMax; ++sx) {
                                 for (std::size_t sy = syMin; sy < syMax; ++sy) {
-                                    output[oIndexFull] += weights[wIndex + sx*std::get<2>(attrs)[1] + sy] *
+                                    output[oIndexFull] += weights[wIndex + sx*kernelDims[1] + sy] *
                                                             input[iIndex + static_cast<std::size_t>(ix+static_cast<signedsize>(sx))*inputDims[3] + static_cast<std::size_t>(iy+static_cast<signedsize>(sy))];
                                 }
                             }
diff --git a/include/aidge/backend/cpu/operator/FCImpl.hpp b/include/aidge/backend/cpu/operator/FCImpl.hpp
index db5f76834411925f3356a42bfb4bfda7da600e8e..0ba500c036d6b7ad926086517abfbdd075143d1f 100644
--- a/include/aidge/backend/cpu/operator/FCImpl.hpp
+++ b/include/aidge/backend/cpu/operator/FCImpl.hpp
@@ -12,14 +12,15 @@
 #ifndef AIDGE_CPU_OPERATOR_FCIMPL_H_
 #define AIDGE_CPU_OPERATOR_FCIMPL_H_
 
+#include <memory>
+#include <vector>
+#include <array>
+
 #include "aidge/backend/OperatorImpl.hpp"
 #include "aidge/operator/FC.hpp"
 #include "aidge/utils/Registrar.hpp"
 #include "aidge/utils/Types.h"
 #include "aidge/backend/cpu/data/GetCPUPtr.h"
-#include <memory>
-#include <vector>
-#include <array>
 
 namespace Aidge {
 // class FC_Op;
@@ -30,29 +31,29 @@ class FCImplForward_cpu : public Registrable<FCImplForward_cpu,
                                                         DataType,
                                                         DataType,
                                                         DataType>,
-                                             void(const FC_Op::Attrs&,
-                                                  const DimSize_t,
-                                                  const DimSize_t,
-                                                  const DimSize_t,
-                                                  const void *,
-                                                  const void *,
-                                                  const void *,
-                                                  void *)> {};
+                                             void(const bool,
+                                                const DimSize_t,
+                                                const DimSize_t,
+                                                const DimSize_t,
+                                                const void *,
+                                                const void *,
+                                                const void *,
+                                                void *)> {};
 class FCImplBackward_cpu : public Registrable<FCImplBackward_cpu,
                                               std::tuple<DataType,
                                                          DataType,
                                                          DataType,
                                                          DataType>,
-                                              void(const FC_Op::Attrs&,
-                                              const DimSize_t,
-                                              const DimSize_t,
-                                              const DimSize_t,
-                                              const void *,
-                                              const void *,
-                                              const void *,
-                                              void *,
-                                              void *,
-                                              void *)> {};
+                                              void(const bool,
+                                                const DimSize_t,
+                                                const DimSize_t,
+                                                const DimSize_t,
+                                                const void *,
+                                                const void *,
+                                                const void *,
+                                                void *,
+                                                void *,
+                                                void *)> {};
 
 class FCImpl_cpu : public OperatorImpl {
 public:
diff --git a/include/aidge/backend/cpu/operator/FCImpl_backward_kernels.hpp b/include/aidge/backend/cpu/operator/FCImpl_backward_kernels.hpp
index 9dd91eb883902db907f5e5004dd0cf4db59bd6a2..9cb4c6f870375aad41e13c9ff65f4ab6250e9c78 100644
--- a/include/aidge/backend/cpu/operator/FCImpl_backward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/FCImpl_backward_kernels.hpp
@@ -19,7 +19,7 @@
 
 namespace Aidge {
 template <class I, class O, class W, class B>
-void FCImpl_cpu_backward_kernel(const FC_Op::Attrs& attrs,
+void FCImpl_cpu_backward_kernel(const bool noBias,
                                 const DimSize_t batchSize,
                                 const DimSize_t inputFeatureSize,
                                 const DimSize_t outputFeatureSize,
@@ -40,7 +40,7 @@ void FCImpl_cpu_backward_kernel(const FC_Op::Attrs& attrs,
 
 
     // bias grad
-    if (std::get<0>(attrs)) { // no bias
+    if (noBias) { // no bias
         std::fill(biasesGrad, biasesGrad + outputFeatureSize, B(0));
     } else {
         for (std::size_t o = 0; o < outputFeatureSize; ++o) { // nb outputs
diff --git a/include/aidge/backend/cpu/operator/FCImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/FCImpl_forward_kernels.hpp
index 2a1a86bac51106e23593a8dc5aa13d72511582b6..2f00af0906fe9f23f804dfa6a2e5cb3aff7c7988 100644
--- a/include/aidge/backend/cpu/operator/FCImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/FCImpl_forward_kernels.hpp
@@ -83,16 +83,21 @@ namespace Aidge {
 // }
 
 template <class I, class W, class B, class O>
-void FCImpl_cpu_forward_kernel(const FC_Op::Attrs& attrs, const DimSize_t batchSize, const DimSize_t inputFeatureSize,
-                                    const DimSize_t outputFeatureSize,
-                                   const void* input_, const void* weights_, const void* biases_, void* output_) {
+void FCImpl_cpu_forward_kernel(const bool noBias,
+                            const DimSize_t batchSize,
+                            const DimSize_t inputFeatureSize,
+                            const DimSize_t outputFeatureSize,
+                            const void* input_,
+                            const void* weights_,
+                            const void* biases_,
+                            void* output_) {
     // FIXME: missing FC attributes as arguments
     const I* input = static_cast<const I*>(input_);
     const W* weights = static_cast<const W*>(weights_);
     const B* biases = static_cast<const B*>(biases_);
     O* output = static_cast<O*>(output_);
 
-    if (std::get<0>(attrs)) {
+    if (noBias) {
         std::fill(output, output+(batchSize*outputFeatureSize), B(0));
     }
     else {
diff --git a/include/aidge/backend/cpu/operator/LeakyReLUImpl.hpp b/include/aidge/backend/cpu/operator/LeakyReLUImpl.hpp
index 880a59b3aeae2598f6b1ed5e287af18fd7bcfd6f..c9ad909eee631189a81067eda076c0b8cbb13377 100644
--- a/include/aidge/backend/cpu/operator/LeakyReLUImpl.hpp
+++ b/include/aidge/backend/cpu/operator/LeakyReLUImpl.hpp
@@ -25,11 +25,19 @@
 namespace Aidge {
 // compute kernel registry for forward and backward
 class LeakyReLUImplForward_cpu
-    : public Registrable<LeakyReLUImplForward_cpu, std::tuple<DataType, DataType>, void(const LeakyReLU_Op::Attrs&, std::size_t, const void*, void*)> {
-};
+    : public Registrable<LeakyReLUImplForward_cpu,
+                        std::tuple<DataType, DataType>,
+                        void(const float,
+                            std::size_t,
+                            const void*,
+                            void*)> {};
 class LeakyReLUImplBackward_cpu
-    : public Registrable<LeakyReLUImplBackward_cpu, std::tuple<DataType, DataType>, void(const LeakyReLU_Op::Attrs&, std::size_t, const void*, void*)> {
-};
+    : public Registrable<LeakyReLUImplBackward_cpu,
+                        std::tuple<DataType, DataType>,
+                        void(const float,
+                            std::size_t,
+                            const void*,
+                            void*)> {};
 
 class LeakyReLUImpl_cpu : public OperatorImpl {
 public:
diff --git a/include/aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp b/include/aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp
index 949e6af66a476693b347f38a45edea10e21bc933..e308d940890101ad396c7ed20541bbc4f8b035cf 100644
--- a/include/aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp
@@ -18,17 +18,17 @@
 
 namespace Aidge {
 template <class I, class O>
-void LeakyReLUImpl_cpu_backward_kernel(const LeakyReLU_Op::Attrs& attrs,
+void LeakyReLUImpl_cpu_backward_kernel(const float negativeSlope_,
                                      std::size_t inputLenght,
                                      const void* input_,
                                      void* output_) {
 
     const I* input = static_cast<const I*>(input_);
     O* output = static_cast<O*>(output_);
-    I negativeSlope = static_cast<I>(std::get<0>(attrs));
+    const I negativeSlope = static_cast<const I>(negativeSlope_);
 
     for (std::size_t i = 0; i < inputLenght; ++i) {
-        output[i] = input[i] > 0 ? input[i] : negativeSlope*input[i];
+        output[i] = (input[i] > 0) ? input[i] : negativeSlope*input[i];
     }
 }
 
diff --git a/include/aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp
index d10b32e18ee983fc1270bc4a7cce35e18f601071..450d0bf4ace4879f90e0104e14b5bf61366e96c2 100644
--- a/include/aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp
@@ -18,17 +18,17 @@
 
 namespace Aidge {
 template <class I, class O>
-void LeakyReLUImpl_cpu_forward_kernel(const LeakyReLU_Op::Attrs& attrs,
+void LeakyReLUImpl_cpu_forward_kernel(const float negativeSlope_,
                                      std::size_t inputLenght,
                                      const void* input_,
                                      void* output_) {
 
     const I* input = static_cast<const I*>(input_);
     O* output = static_cast<O*>(output_);
-    const I negativeSlope = static_cast<const I>(std::get<0>(attrs));
+    const I negativeSlope = static_cast<const I>(negativeSlope_);
 
     for (std::size_t i = 0; i < inputLenght; ++i) {
-        output[i] = input[i] >= 0 ? input[i] : input[i] * negativeSlope;
+        output[i] = (input[i] >= 0) ? input[i] : input[i] * negativeSlope;
     }
 }
 
diff --git a/include/aidge/backend/cpu/operator/MaxPoolingImpl.hpp b/include/aidge/backend/cpu/operator/MaxPoolingImpl.hpp
index d2d30aa7db5b1522712faa846ef33e1b21772d5e..4dd30e1fb939837f6861313eda04d7d05f3c8110 100644
--- a/include/aidge/backend/cpu/operator/MaxPoolingImpl.hpp
+++ b/include/aidge/backend/cpu/operator/MaxPoolingImpl.hpp
@@ -29,12 +29,22 @@ namespace Aidge {
 // compute kernel registry for forward and backward
 class MaxPoolingImpl2DForward_cpu
     : public Registrable<MaxPoolingImpl2DForward_cpu,
-                         std::tuple<DataType, DataType>,
-                         void(const MaxPooling_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, void *)> {};
+                        std::tuple<DataType, DataType>,
+                        void(const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            const bool,
+                            const std::array<DimSize_t, 4> &,
+                            const void *,
+                            void *)> {};
 class MaxPoolingImpl2DBackward_cpu
     : public Registrable<MaxPoolingImpl2DBackward_cpu,
-                         std::tuple<DataType, DataType>,
-                         void(const MaxPooling_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *, void *)> {};
+                        std::tuple<DataType, DataType>,
+                        void(const std::array<DimSize_t, 2>&,
+                            const std::array<DimSize_t, 2>&,
+                            const bool,
+                            const std::array<DimSize_t, 4> &,
+                            const void *,
+                            void *)> {};
 
 class MaxPoolingImpl2D_cpu : public OperatorImpl {
 public:
diff --git a/include/aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp
index c4baccdee5def0be93be42b5657d77d21240328c..79a7bd154f4d4e19a71d719597992466c37c6a9f 100644
--- a/include/aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp
@@ -12,15 +12,15 @@
 #ifndef AIDGE_CPU_OPERATOR_MaxPOOLINGIMPL_FORWARD_KERNEL_H_
 #define AIDGE_CPU_OPERATOR_MaxPOOLINGIMPL_FORWARD_KERNEL_H_
 
-#include "aidge/utils/Registrar.hpp"
+#include <array>
+#include <cmath>
+#include <tuple>
 
 #include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp"
-#include "aidge/utils/Types.h"
 #include "aidge/backend/cpu/data/GetCPUPtr.h"
 #include "aidge/data/Data.hpp"
-#include <array>
-#include <tuple>
-#include <cmath>
+#include "aidge/utils/Registrar.hpp"
+#include "aidge/utils/Types.h"
 
 namespace Aidge {
 /**
@@ -33,17 +33,16 @@ namespace Aidge {
  * @param output_ Output Tensor.
  */
 template <class I, class O>
-void MaxPoolingImpl2D_cpu_forward_kernel(const MaxPooling_Op<2>::Attrs &attrs,
-                                             const std::array<DimSize_t, 4> &dims,
-                                             const void *input_,
-                                             void *output_) {
+void MaxPoolingImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
+                                        const std::array<DimSize_t, 2>& kernelDims,
+                                        const bool /*ceilMode*/,
+                                        const std::array<DimSize_t, 4> &dims,
+                                        const void *input_,
+                                        void *output_) {
     // FIXME: missing convolution parameters as arguments
     const I *input = static_cast<const I *>(input_);
     O *output = static_cast<O *>(output_);
 
-    std::array<DimSize_t, 2> strideDims  = std::get<0>(attrs);
-    std::array<DimSize_t, 2> kernelDims  = std::get<1>(attrs);
-
     // output H size
     const std::size_t oxSize =
             static_cast<std::size_t>(std::floor(static_cast<float>(dims[2] - kernelDims[0] + strideDims[0]) /
diff --git a/include/aidge/backend/cpu/operator/PadImpl.hpp b/include/aidge/backend/cpu/operator/PadImpl.hpp
index b3c91a43419e9a5e9e1299f4a2118a51b6b64fc7..b90e6a4f23bbf5f5eeed800a2f47230a38c90e78 100644
--- a/include/aidge/backend/cpu/operator/PadImpl.hpp
+++ b/include/aidge/backend/cpu/operator/PadImpl.hpp
@@ -30,13 +30,21 @@ namespace Aidge {
 class PadImpl2DForward_cpu
     : public Registrable<PadImpl2DForward_cpu,
                          std::tuple<DataType, DataType>,
-                         void(const Pad_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *,
-                              void *)> {};
+                         void(const std::array<DimSize_t, 4>&,
+                            const PadBorderType,
+                            const double,
+                            const std::array<DimSize_t, 4> &,
+                            const void *,
+                            void *)> {};
 class PadImpl2DBackward_cpu
     : public Registrable<PadImpl2DBackward_cpu,
                          std::tuple<DataType, DataType>,
-                         void(const Pad_Op<2>::Attrs &, const std::array<DimSize_t, 4> &, const void *,
-                              void *)> {};
+                         void(const std::array<DimSize_t, 4>&,
+                            const PadBorderType,
+                            const double,
+                            const std::array<DimSize_t, 4> &,
+                            const void *,
+                            void *)> {};
 
 class PadImpl2D_cpu : public OperatorImpl {
 public:
diff --git a/include/aidge/backend/cpu/operator/PadImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/PadImpl_forward_kernels.hpp
index f6f00bc4df661921708e605f44056a77bb8125f4..268c8d7fce8c5f10a85aaf102b42310158115dc4 100644
--- a/include/aidge/backend/cpu/operator/PadImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/PadImpl_forward_kernels.hpp
@@ -12,14 +12,15 @@
 #ifndef AIDGE_CPU_OPERATOR_PADIMPL_FORWARD_KERNEL_H_
 #define AIDGE_CPU_OPERATOR_PADIMPL_FORWARD_KERNEL_H_
 
-#include "aidge/utils/Registrar.hpp"
+#include <algorithm>  // std::max, std::min
+#include <array>
+#include <cstddef>    // std::size_t
+#include <cstdint>    // std::int32_t
 
+#include "aidge/backend/cpu/data/GetCPUPtr.h"
 #include "aidge/backend/cpu/operator/PadImpl.hpp"
+#include "aidge/utils/Registrar.hpp"
 #include "aidge/utils/Types.h"
-#include "aidge/backend/cpu/data/GetCPUPtr.h"
-#include <cmath>
-#include <array>
-#include <algorithm>
 
 namespace Aidge {
 /**
@@ -32,58 +33,62 @@ namespace Aidge {
  * @param output_ Output Tensor.
  */
 template <class I, class O>
-void PadImpl2D_cpu_forward_kernel(const Pad_Op<2>::Attrs &attrs, const std::array<DimSize_t, 4> &dims,
-                                       const void *input_, void *output_)
+void PadImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 4>& beginEndBorders,
+                                const PadBorderType borderType,
+                                const double borderValue,
+                                const std::array<DimSize_t, 4> &dims,
+                                const void *input_,
+                                void *output_)
 {
     const I *input = static_cast<const I *>(input_);
     O *output = static_cast<O *>(output_);
 
-    const std::size_t oySize = dims[2] + std::get<0>(attrs)[0] + std::get<0>(attrs)[1];
-    const std::size_t oxSize = dims[3] + std::get<0>(attrs)[2] + std::get<0>(attrs)[3];
+    const std::size_t oySize = dims[2] + beginEndBorders[0] + beginEndBorders[1];
+    const std::size_t oxSize = dims[3] + beginEndBorders[2] + beginEndBorders[3];
 
     for (std::size_t batch = 0; batch < dims[0]; ++batch) {
         for (std::size_t ch = 0; ch < dims[1]; ++ch) {
             const std::size_t iIndex = (ch + batch*dims[1]) * dims[2] * dims[3];
             const std::size_t oIndex = (ch + batch*dims[1]) * oxSize * oySize;
 
-            for (unsigned int oy = 0; oy < oySize; ++oy) {
-                for (unsigned int ox = 0; ox < oxSize; ++ox) {
+            for (std::uint32_t oy = 0; oy < oySize; ++oy) {
+                for (std::uint32_t ox = 0; ox < oxSize; ++ox) {
                     const std::size_t oIndexFull = oIndex + ox*oySize + oy;
 
-                    O outputValue = std::get<2>(attrs);
+                    O outputValue = static_cast<O>(borderValue);
 
-                    if (std::get<1>(attrs) == PadBorderType::Constant) {
-                        int ix = static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[3]);
-                        int iy = static_cast<int>(oy) - static_cast<int>(std::get<0>(attrs)[1]);
+                    if (borderType == PadBorderType::Constant) {
+                        std::int32_t ix = static_cast<std::int32_t>(ox) - static_cast<std::int32_t>(beginEndBorders[3]);
+                        std::int32_t iy = static_cast<std::int32_t>(oy) - static_cast<std::int32_t>(beginEndBorders[1]);
 
-                        if (ix >= 0  && ix < static_cast<int>(dims[3]) && iy >= 0  && iy < static_cast<int>(dims[2])) {
+                        if (ix >= 0  && ix < static_cast<std::int32_t>(dims[3]) && iy >= 0  && iy < static_cast<std::int32_t>(dims[2])) {
                             outputValue = input[iIndex + static_cast<std::size_t>(ix)*dims[2] + static_cast<std::size_t>(iy)];
                         }
                     }
-                    else if (std::get<1>(attrs) == PadBorderType::Edge) {
-                        int ix = std::max(0, std::min(static_cast<int>(dims[3]) - 1, static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[3])));
-                        int iy = std::max(0, std::min(static_cast<int>(dims[2]) - 1, static_cast<int>(oy) - static_cast<int>(std::get<0>(attrs)[1])));
+                    else if (borderType == PadBorderType::Edge) {
+                        std::int32_t ix = std::max(0, std::min(static_cast<std::int32_t>(dims[3]) - 1, static_cast<std::int32_t>(ox) - static_cast<std::int32_t>(beginEndBorders[3])));
+                        std::int32_t iy = std::max(0, std::min(static_cast<std::int32_t>(dims[2]) - 1, static_cast<std::int32_t>(oy) - static_cast<std::int32_t>(beginEndBorders[1])));
 
                         outputValue = input[iIndex + static_cast<std::size_t>(ix)*dims[2] + static_cast<std::size_t>(iy)];
                     }
-                    else if (std::get<1>(attrs) == PadBorderType::Reflect) {
-                        int ix = static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[3]);
-                        int iy = static_cast<int>(oy) - static_cast<int>(std::get<0>(attrs)[1]);
+                    else if (borderType == PadBorderType::Reflect) {
+                        std::int32_t ix = static_cast<std::int32_t>(ox) - static_cast<std::int32_t>(beginEndBorders[3]);
+                        std::int32_t iy = static_cast<std::int32_t>(oy) - static_cast<std::int32_t>(beginEndBorders[1]);
 
                         if (ix < 0)
                             ix = 0 - ix;
                         if (iy < 0)
                             iy = 0 - iy;
-                        if (ix >= static_cast<int>(dims[3]))
-                            ix = static_cast<int>(dims[3]) - ix;
-                        if (iy >= static_cast<int>(dims[2]))
-                            iy = static_cast<int>(dims[2]) - iy;
+                        if (ix >= static_cast<std::int32_t>(dims[3]))
+                            ix = static_cast<std::int32_t>(dims[3]) - ix;
+                        if (iy >= static_cast<std::int32_t>(dims[2]))
+                            iy = static_cast<std::int32_t>(dims[2]) - iy;
 
                         outputValue = input[iIndex + static_cast<std::size_t>(ix)*dims[2] + static_cast<std::size_t>(iy)];
                     }
-                    else if (std::get<1>(attrs) == PadBorderType::Wrap) {
-                        int ix = (static_cast<int>(dims[3]) + static_cast<int>(ox) - static_cast<int>(std::get<0>(attrs)[3])) % static_cast<int>(dims[3]);
-                        int iy = (static_cast<int>(dims[2]) + static_cast<int>(oy) - static_cast<int>(std::get<0>(attrs)[1])) % static_cast<int>(dims[2]);
+                    else if (borderType == PadBorderType::Wrap) {
+                        std::int32_t ix = (static_cast<std::int32_t>(dims[3]) + static_cast<std::int32_t>(ox) - static_cast<std::int32_t>(beginEndBorders[3])) % static_cast<std::int32_t>(dims[3]);
+                        std::int32_t iy = (static_cast<std::int32_t>(dims[2]) + static_cast<std::int32_t>(oy) - static_cast<std::int32_t>(beginEndBorders[1])) % static_cast<std::int32_t>(dims[2]);
 
                         outputValue = input[iIndex + static_cast<std::size_t>(ix)*dims[2] + static_cast<std::size_t>(iy)];
                     }
@@ -101,7 +106,7 @@ static Registrar<PadImpl2DForward_cpu> registrarPadImpl2DForward_cpu_Float32(
         Aidge::PadImpl2D_cpu_forward_kernel<float, float>);
 static Registrar<PadImpl2DForward_cpu> registrarPadImpl2DForward_cpu_Int32(
         {DataType::Int32, DataType::Int32},
-        Aidge::PadImpl2D_cpu_forward_kernel<int, int>);
+        Aidge::PadImpl2D_cpu_forward_kernel<std::int32_t, std::int32_t>);
 static Registrar<PadImpl2DForward_cpu> registrarPadImpl2DForward_cpu_Float64(
         {DataType::Float64, DataType::Float64},
         Aidge::PadImpl2D_cpu_forward_kernel<double, double>);
diff --git a/include/aidge/backend/cpu/operator/ReduceMeanImpl.hpp b/include/aidge/backend/cpu/operator/ReduceMeanImpl.hpp
index 7355a2bd46f45ab5019a31832001ae3335c1d8e8..8d784c38dc006ea82f040dfe83b4bef05908dd68 100644
--- a/include/aidge/backend/cpu/operator/ReduceMeanImpl.hpp
+++ b/include/aidge/backend/cpu/operator/ReduceMeanImpl.hpp
@@ -28,12 +28,20 @@ namespace Aidge {
 // Every DIM
 class ReduceMeanImplForward_cpu
     : public Registrable<ReduceMeanImplForward_cpu,
-                         std::tuple<DataType, DataType>,
-                         void(const ReduceMean_Op::Attrs &, const std::vector<DimSize_t>&, const void *, void *)> {};
+                        std::tuple<DataType, DataType>,
+                        void(const std::vector<std::int32_t>&,
+                            DimSize_t,
+                            const std::vector<DimSize_t>&,
+                            const void *,
+                            void *)> {};
 class ReduceMeanImpl1DBackward_cpu
     : public Registrable<ReduceMeanImpl1DBackward_cpu,
-                         std::tuple<DataType, DataType>,
-                         void(const ReduceMean_Op::Attrs &, const std::vector<DimSize_t>&, const void *,  void *)> {};
+                        std::tuple<DataType, DataType>,
+                        void(const std::vector<std::int32_t>&,
+                            DimSize_t,
+                            const std::vector<DimSize_t>&,
+                            const void *,
+                            void *)> {};
 
 class ReduceMeanImpl_cpu : public OperatorImpl {
    public:
diff --git a/include/aidge/backend/cpu/operator/ReduceMeanImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ReduceMeanImpl_forward_kernels.hpp
index 6533f7b19eac07d429cd8c5ed05ea082457b9e7b..bba355e16958bb1a22bde1d24304d992a658ade8 100644
--- a/include/aidge/backend/cpu/operator/ReduceMeanImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/ReduceMeanImpl_forward_kernels.hpp
@@ -26,15 +26,15 @@
 
 namespace Aidge {
 template <class I, class O>
-void ReduceMeanImpl_cpu_forward_kernel(const typename ReduceMean_Op::Attrs& attrs,
-                                     const std::vector<DimSize_t>& inputDims,
-                                     const void* input_,
-                                     void* output_) {
+void ReduceMeanImpl_cpu_forward_kernel(const std::vector<std::int32_t>& axes,
+                                    DimSize_t /*keepDims*/,
+                                    const std::vector<DimSize_t>& inputDims,
+                                    const void* input_,
+                                    void* output_) {
 
     const I* input = static_cast<const I*>(input_);
     O* output = static_cast<O*>(output_);
 
-    const std::vector<std::int32_t>& axes = std::get<0>(attrs);
     const std::size_t nb_dims = inputDims.size();
     const std::size_t totalElements = std::accumulate(inputDims.cbegin(), inputDims.cend(), 1, std::multiplies<std::size_t>());
 
diff --git a/include/aidge/backend/cpu/operator/ScalingImpl.hpp b/include/aidge/backend/cpu/operator/ScalingImpl.hpp
index 66bb42f7fb909ee9b6c91a6321ee3fa32c977626..8590169272818a225fe4299150f873733cdd9cd9 100644
--- a/include/aidge/backend/cpu/operator/ScalingImpl.hpp
+++ b/include/aidge/backend/cpu/operator/ScalingImpl.hpp
@@ -26,11 +26,23 @@ namespace Aidge {
 
 // compute kernel registry for forward and backward
 class ScalingImplForward_cpu
-    : public Registrable<ScalingImplForward_cpu, std::tuple<DataType, DataType>, void(const Scaling_Op::Attrs&, std::size_t, const void*, void*)> {
-};
+    : public Registrable<ScalingImplForward_cpu,
+                        std::tuple<DataType, DataType>,
+                        void(const float,
+                            const std::size_t,
+                            const bool,
+                            std::size_t,
+                            const void*,
+                            void*)> {};
 class ScalingImplBackward_cpu
-    : public Registrable<ScalingImplBackward_cpu, std::tuple<DataType, DataType>, void(const Scaling_Op::Attrs&, std::size_t, const void*, void*)> {
-};
+    : public Registrable<ScalingImplBackward_cpu,
+                        std::tuple<DataType, DataType>,
+                        void(const float,
+                            const std::size_t,
+                            const bool,
+                            std::size_t,
+                            const void*,
+                            void*)> {};
 
 class ScalingImpl_cpu : public OperatorImpl {
 public:
diff --git a/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp
index df8e1a7e7b02a4ad032d6f09fae3ae2cd8a42eff..c654265dd6f650129201037976d89da4b0f39d96 100644
--- a/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp
@@ -73,22 +73,21 @@ O saturate(const O value, const std::size_t quantizedNbBits, const bool isOutput
 }
 
 template <class I, class O>
-void ScalingImpl_cpu_forward_kernel(const Scaling_Op::Attrs& attrs,
-                                     std::size_t inputLenght,
-                                     const void* input_,
-                                     void* output_) {
+void ScalingImpl_cpu_forward_kernel(const float scalingFactor,
+                                    const std::size_t quantizedNbBits,
+                                    const bool isOutputUnsigned,
+                                    std::size_t inputLenght,
+                                    const void* input_,
+                                    void* output_) {
 
     const I* input = static_cast<const I*>(input_);
     O* output = static_cast<O*>(output_);
-    const I& scalingFactor = static_cast<const I&>(std::get<0>(attrs));
-    const std::size_t quantizedNbBits = static_cast<std::size_t>(std::get<1>(attrs));
-    const bool isOutputUnsigned = static_cast<bool>(std::get<2>(attrs));
 
     for (std::size_t i = 0; i < inputLenght; ++i) {
-        output[i] = input[i] * scalingFactor;
+        output[i] = static_cast<O>(input[i] * static_cast<I>(scalingFactor));
 
         if(quantizedNbBits > 0) {
-                output[i] = saturate(std::round(output[i]), quantizedNbBits, isOutputUnsigned);
+            output[i] = saturate(std::round(output[i]), quantizedNbBits, isOutputUnsigned);
         }
     }
 }
diff --git a/include/aidge/backend/cpu/operator/SliceImpl.hpp b/include/aidge/backend/cpu/operator/SliceImpl.hpp
index 7370eb5ee0a65ce9191a450271f816f873ac0737..61aed1553bfbd2e67fc837ec6ea8d80b26ef3558 100644
--- a/include/aidge/backend/cpu/operator/SliceImpl.hpp
+++ b/include/aidge/backend/cpu/operator/SliceImpl.hpp
@@ -9,28 +9,43 @@
  *
  ********************************************************************************/
 
-#ifndef __AIDGE_CPU_OPERATOR_SLICEIMPL_H__
-#define __AIDGE_CPU_OPERATOR_SLICEIMPL_H__
+#ifndef AIDGE_CPU_OPERATOR_SLICEIMPL_H__
+#define AIDGE_CPU_OPERATOR_SLICEIMPL_H__
+
+#include <memory>
+#include <vector>
+#include <array>
 
 #include "aidge/backend/OperatorImpl.hpp"
 #include "aidge/operator/Slice.hpp"
 #include "aidge/utils/Registrar.hpp"
 #include "aidge/utils/Types.h"
 #include "aidge/backend/cpu/data/GetCPUPtr.h"
-#include <memory>
-#include <vector>
-#include <array>
 
 namespace Aidge {
 // class Slice_Op;
 
 // compute kernel registry for forward and backward
 class SliceImplForward_cpu
-    : public Registrable<SliceImplForward_cpu, std::tuple<DataType, DataType>, void(const Slice_Op::Attrs&, const std::vector<DimSize_t>&, const void*, void*)> {
-};
+    : public Registrable<SliceImplForward_cpu,
+                        std::tuple<DataType, DataType>,
+                        void(const std::vector<std::int64_t>&,
+                            const std::vector<std::int64_t>&,
+                            const std::vector<std::int8_t>&,
+                            const std::vector<std::int64_t>&,
+                            const std::vector<DimSize_t>&,
+                            const void*,
+                            void*)> {};
 class SliceImplBackward_cpu
-    : public Registrable<SliceImplBackward_cpu, std::tuple<DataType, DataType>, void(const Slice_Op::Attrs&, const std::vector<DimSize_t>&, const void*, void*)> {
-};
+    : public Registrable<SliceImplBackward_cpu,
+                        std::tuple<DataType, DataType>,
+                        void(const std::vector<std::int64_t>&,
+                            const std::vector<std::int64_t>&,
+                            const std::vector<std::int8_t>&,
+                            const std::vector<std::int64_t>&,
+                            const std::vector<DimSize_t>&,
+                            const void*,
+                            void*)> {};
 
 class SliceImpl_cpu : public OperatorImpl {
 public:
diff --git a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp
index d3a6ef32bdd269e08fa8320c554aa251b54bb80b..31e409369cc640bbda9f54c54652af7f72b509b6 100644
--- a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp
@@ -23,7 +23,14 @@
 namespace Aidge {
 
 template<class I, class O>
-void SliceImpl_cpu_forward_kernel(const Slice_Op::Attrs &attrs, const std::vector<DimSize_t>&inputDims, const void *input_, void *output_){
+void SliceImpl_cpu_forward_kernel(const std::vector<std::int64_t>& starts,
+                                const std::vector<std::int64_t>& ends,
+                                const std::vector<std::int8_t>& axes,
+                                const std::vector<std::int64_t>& steps,
+                                const std::vector<DimSize_t>& inputDims,
+                                const void* input_,
+                                void* output_)
+{
     const I* input = static_cast<const I*>(input_);
     O* output = static_cast<O*>(output_);
 
@@ -32,19 +39,19 @@ void SliceImpl_cpu_forward_kernel(const Slice_Op::Attrs &attrs, const std::vecto
     DimSize_t totalSize = std::accumulate(inputDims.cbegin(), inputDims.cend(), std::size_t(1), std::multiplies<std::size_t>());
     const I* inputAccumulation = input;
     I* outputAccumulation = nullptr;
-    const std::size_t nbAxes = std::get<0>(attrs).size();
+    const std::size_t nbAxes = starts.size();
     for (std::size_t i = 0; i < nbAxes; ++i) {
-        const DimIdx_t axis = std::get<2>(attrs)[i] >= 0 ?
-                                    static_cast<DimIdx_t>(std::get<2>(attrs)[i]) :
-                                    static_cast<DimIdx_t>(std::get<2>(attrs)[i] + static_cast<DimIdx_t>(inputDims.size()));
-        const DimSize_t start = std::min(std::get<0>(attrs)[i] >= 0 ?
-                                                static_cast<DimSize_t>(std::get<0>(attrs)[i]) :
-                                                static_cast<DimSize_t>(std::get<0>(attrs)[i] + static_cast<std::int64_t>(inputDims[axis])),
+        const DimIdx_t axis = axes[i] >= 0 ?
+                                    static_cast<DimIdx_t>(axes[i]) :
+                                    static_cast<DimIdx_t>(axes[i] + static_cast<DimIdx_t>(inputDims.size()));
+        const DimSize_t start = std::min(starts[i] >= 0 ?
+                                                static_cast<DimSize_t>(starts[i]) :
+                                                static_cast<DimSize_t>(starts[i] + static_cast<std::int64_t>(inputDims[axis])),
                                          dims[axis]-1);
-        const DimSize_t end = std::get<1>(attrs)[i] >= 0 ?
-                                        static_cast<DimSize_t>(std::get<1>(attrs)[i]) :
-                                        static_cast<DimSize_t>(std::get<1>(attrs)[i] + static_cast<std::int64_t>(inputDims[axis]));
-        const std::int64_t step = std::get<3>(attrs)[i];
+        const DimSize_t end = ends[i] >= 0 ?
+                                        static_cast<DimSize_t>(ends[i]) :
+                                        static_cast<DimSize_t>(ends[i] + static_cast<std::int64_t>(inputDims[axis]));
+        const std::int64_t step = steps[i];
 
         const std::size_t sliceSize = static_cast<std::size_t>(std::ceil((static_cast<float>(end) - static_cast<float>(start)) / static_cast<float>(step)));
 
@@ -67,12 +74,12 @@ void SliceImpl_cpu_forward_kernel(const Slice_Op::Attrs &attrs, const std::vecto
         totalSize /= dims[axis];
         totalSize *= sliceSize;
         dims[axis] = sliceSize;
-        
+
         if (inputAccumulation != input) {
             delete[] inputAccumulation;
         }
         inputAccumulation = outputAccumulation;
-        
+
     }
     // Copy elements from inputAccumulation to output while dividing by divisor
     std::copy_n(inputAccumulation, totalSize, output);
diff --git a/src/operator/AvgPoolingImpl.cpp b/src/operator/AvgPoolingImpl.cpp
index 8ba6751bf4068a69ed07e362924f59d0f4aca6c5..feaa7e67a8d0bc726462aed99e557493d3b8d0c6 100644
--- a/src/operator/AvgPoolingImpl.cpp
+++ b/src/operator/AvgPoolingImpl.cpp
@@ -9,17 +9,17 @@
  *
  ********************************************************************************/
 
-#include <cassert>
+#include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp"
+
+#include <array>
 #include <numeric>
-#include <thread>
 #include <vector>
 
-#include "aidge/utils/Types.h"
 #include "aidge/backend/cpu/data/GetCPUPtr.h"
-#include "aidge/operator/AvgPooling.hpp"
-
-#include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp"
 #include "aidge/backend/cpu/operator/AvgPoolingImpl_forward_kernels.hpp"
+#include "aidge/data/Tensor.hpp"
+#include "aidge/operator/AvgPooling.hpp"
+#include "aidge/utils/Types.h"
 
 Aidge::Elts_t Aidge::AvgPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
     // this implementation can be in-place
@@ -27,15 +27,18 @@ Aidge::Elts_t Aidge::AvgPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*in
 }
 
 void Aidge::AvgPoolingImpl2D_cpu::forward() {
-    assert(mOp.getRawInput(0) && "missing input #0");
+    const auto& op_ = dynamic_cast<const AvgPooling_Op<2>&>(mOp);
+    assert(op_.getInput(0) && "missing input #0");
 
     // Find the correct kernel type
-    auto kernelFunc =
-            Registrar<AvgPoolingImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
+    auto kernelFunc = Registrar<AvgPoolingImpl2DForward_cpu>::create(
+        {op_.getInput(0)->dataType(),
+         op_.getOutput(0)->dataType()});
 
     // Call kernel
-    kernelFunc(dynamic_cast<const AvgPooling_Op<2>&>(mOp).getStaticAttributes(),
-               std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(),
-               getCPUPtr(mOp.getRawInput(0)),
-               getCPUPtr(mOp.getRawOutput(0)));
+    kernelFunc(op_.strideDims(),
+               op_.kernelDims(),
+               op_.getInput(0)->template dims<4>(),
+               getCPUPtr(op_.getInput(0)),
+               getCPUPtr(op_.getOutput(0)));
 }
diff --git a/src/operator/BatchNormImpl.cpp b/src/operator/BatchNormImpl.cpp
index 96179d11850624f831333c9a4badaddf2221ecff..3046eea9bd241732daf39cce1783b5ee50de01c7 100644
--- a/src/operator/BatchNormImpl.cpp
+++ b/src/operator/BatchNormImpl.cpp
@@ -9,7 +9,9 @@
  *
  ********************************************************************************/
 
-#include <cassert>
+#include "aidge/backend/cpu/operator/BatchNormImpl.hpp"
+
+
 #include <numeric> // std::accumulate
 #include <vector>
 
@@ -17,7 +19,6 @@
 #include "aidge/backend/cpu/data/GetCPUPtr.h"
 #include "aidge/operator/BatchNorm.hpp"
 
-#include "aidge/backend/cpu/operator/BatchNormImpl.hpp"
 #include "aidge/backend/cpu/operator/BatchNormImpl_forward_kernels.hpp"
 
 Aidge::Elts_t Aidge::BatchNormImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
@@ -26,27 +27,29 @@ Aidge::Elts_t Aidge::BatchNormImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inp
 }
 
 void Aidge::BatchNormImpl2D_cpu::forward() {
-    assert(mOp.getRawInput(0) && "missing input #0");
-    assert(mOp.getRawInput(1) && "missing input #1");
-    assert(mOp.getRawInput(2) && "missing input #2");
-    assert(mOp.getRawInput(3) && "missing input #3");
-    assert(mOp.getRawInput(4) && "missing input #4");
+    const auto& op_ = dynamic_cast<const BatchNorm_Op<2>&>(mOp);
+    AIDGE_ASSERT(op_.getInput(0), "missing input #0 for BatchNorm Operator");
+    AIDGE_ASSERT(op_.getInput(1), "missing input #1 for BatchNorm Operator");
+    AIDGE_ASSERT(op_.getInput(2), "missing input #2 for BatchNorm Operator");
+    AIDGE_ASSERT(op_.getInput(3), "missing input #3 for BatchNorm Operator");
+    AIDGE_ASSERT(op_.getInput(4), "missing input #4 for BatchNorm Operator");
 
-    assert(std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->nbDims() == 4);
+    AIDGE_ASSERT(op_.getOutput(0)->nbDims() == 4, "");
     // Find the correct kernel type
     auto kernelFunc =
-            Registrar<BatchNormImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
-                                                           std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(),
-                                                           std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
+            Registrar<BatchNormImpl2DForward_cpu>::create({op_.getInput(0)->dataType(),
+                                                           op_.getInput(1)->dataType(),
+                                                           op_.getOutput(0)->dataType()});
 
     // Call kernel
-    kernelFunc(dynamic_cast<const BatchNorm_Op<2>&>(mOp).getStaticAttributes(),
-               std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(),
-               getCPUPtr(mOp.getRawInput(0)),
-               getCPUPtr(mOp.getRawInput(1)),
-               getCPUPtr(mOp.getRawInput(2)),
-               getCPUPtr(mOp.getRawInput(3)),
-               getCPUPtr(mOp.getRawInput(4)),
-               getCPUPtr(mOp.getRawOutput(0)),
-               true);
+    kernelFunc(op_.epsilon(),
+            op_.momentum(),
+            op_.getInput(0)->template dims<4>(),
+            getCPUPtr(op_.getRawInput(0)),
+            getCPUPtr(op_.getRawInput(1)),
+            getCPUPtr(op_.getRawInput(2)),
+            getCPUPtr(op_.getRawInput(3)),
+            getCPUPtr(op_.getRawInput(4)),
+            getCPUPtr(op_.getRawOutput(0)),
+            true);
 }
diff --git a/src/operator/ConvDepthWiseImpl.cpp b/src/operator/ConvDepthWiseImpl.cpp
index 5c8d2fe307c70bd7ee3f64e14735417f7ffb0c67..9c2ad5e4e691ffd304c1bff37222e3c6383fba4e 100644
--- a/src/operator/ConvDepthWiseImpl.cpp
+++ b/src/operator/ConvDepthWiseImpl.cpp
@@ -9,18 +9,18 @@
  *
  ********************************************************************************/
 
-#include <cassert>
-#include <chrono>  // std::chrono::milliseconds
-#include <numeric> // std::accumulate
-#include <thread>  // std::this_thread::sleep_for
+#include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp"
+
+#include <memory>
 #include <vector>
 
-#include "aidge/utils/Types.h"
 #include "aidge/backend/cpu/data/GetCPUPtr.h"
+#include "aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp"
+#include "aidge/data/Tensor.hpp"
 #include "aidge/operator/ConvDepthWise.hpp"
+#include "aidge/utils/Log.hpp"
+#include "aidge/utils/Types.h"
 
-#include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp"
-#include "aidge/backend/cpu/operator/ConvDepthWiseImpl_forward_kernels.hpp"
 
 Aidge::Elts_t Aidge::ConvDepthWiseImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
     // this implementation can be in-place
@@ -28,23 +28,29 @@ Aidge::Elts_t Aidge::ConvDepthWiseImpl2D_cpu::getNbRequiredProtected(IOIndex_t /
 }
 
 void Aidge::ConvDepthWiseImpl2D_cpu::forward() {
-    assert(mOp.getRawInput(0) && "missing input #0");
-    assert(mOp.getRawInput(1) && "missing input #1");
-    assert(mOp.getRawInput(2) && "missing input #2");
+    const auto& op_ = dynamic_cast<const ConvDepthWise_Op<2>&>(mOp);
+
+    AIDGE_ASSERT(op_.getInput(0), "missing input #0 in ConvDepthWise Operator");
+    AIDGE_ASSERT(op_.getInput(1), "missing input #1 in ConvDepthWise Operator");
+    AIDGE_ASSERT(op_.getInput(2), "missing input #2 in ConvDepthWise Operator");
 
-    assert((std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims() == 4) && "support for 4-dimensions tensors only");
+    AIDGE_ASSERT((op_.getInput(0)->nbDims() == 4), "support for 4-dimensions tensors only");
 
     // Find the correct kernel type
-    auto kernelFunc =
-            Registrar<ConvDepthWiseImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
-                                                               std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(),
-                                                               std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->dataType(),
-                                                               std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
+    auto kernelFunc = Registrar<ConvDepthWiseImpl2DForward_cpu>::create(
+        {op_.getInput(0)->dataType(),
+        op_.getInput(1)->dataType(),
+        op_.getInput(2)->dataType(),
+        op_.getOutput(0)->dataType()});
 
     // Call kernel
-    kernelFunc(dynamic_cast<const ConvDepthWise_Op<2>&>(mOp).getStaticAttributes(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(),
-               getCPUPtr(mOp.getRawInput(0)),
-               getCPUPtr(mOp.getRawInput(1)),
-               getCPUPtr(mOp.getRawInput(2)),
-               getCPUPtr(mOp.getRawOutput(0)));
+    kernelFunc(op_.strideDims(),
+            op_.dilationDims(),
+            op_.kernelDims(),
+            op_.noBias(),
+            op_.getInput(0)->template dims<4>(),
+            getCPUPtr(op_.getRawInput(0)),
+            getCPUPtr(op_.getRawInput(1)),
+            getCPUPtr(op_.getRawInput(2)),
+            getCPUPtr(op_.getRawOutput(0)));
 }
diff --git a/src/operator/ConvImpl.cpp b/src/operator/ConvImpl.cpp
index 27e2882c8ee7ddcc60d3d8521802debdcf4b9eb4..f38481b317d2f10e2b7570aea3818570f8cd8a8f 100644
--- a/src/operator/ConvImpl.cpp
+++ b/src/operator/ConvImpl.cpp
@@ -28,19 +28,19 @@ Aidge::Elts_t Aidge::ConvImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx
 }
 
 void Aidge::ConvImpl2D_cpu::forward() {
-    const auto& opTensor = static_cast<const OperatorTensor&>(mOp);
+    const auto& op_ = dynamic_cast<const Conv_Op<2>&>(mOp);
 
     // FIXME: uncomment the following code once memory handling will work
-    assert(mOp.getRawInput(0) && "missing input #0");
-    assert(mOp.getRawInput(1) && "missing input #1");
-    assert(mOp.getRawInput(2) && "missing input #2");
+    AIDGE_ASSERT(op_.getInput(0), "missing input #0 in Conv Operator.");
+    AIDGE_ASSERT(op_.getInput(1), "missing input #1 in Conv Operator.");
+    AIDGE_ASSERT(op_.getInput(2), "missing input #2 in Conv Operator.");
 
     // Find the correct kernel type
-    const auto outputDataType = opTensor.getOutput(0)->dataType();
+    const auto outputDataType = op_.getOutput(0)->dataType();
     const Registrar<ConvImpl2DForward_cpu>::registrar_key registrarKey = {
-        opTensor.getInput(0)->dataType(),
-        opTensor.getInput(1)->dataType(),
-        opTensor.getInput(2)->dataType(),
+        op_.getInput(0)->dataType(),
+        op_.getInput(1)->dataType(),
+        op_.getInput(2)->dataType(),
         outputDataType};
 
     Registrar<ConvImpl2DForward_cpu>::registrar_type kernelFunc;
@@ -59,17 +59,20 @@ void Aidge::ConvImpl2D_cpu::forward() {
     // call to forward(). We might put the following shared_ptr as members of
     // this class to avoid that.
     std::shared_ptr<Tensor> input0Fallback, input1Fallback, input2Fallback;
-    const auto& input0 = opTensor.getInput(0)->refCastFrom(input0Fallback, *opTensor.getOutput(0));
-    const auto& input1 = opTensor.getInput(1)->refCastFrom(input1Fallback, *opTensor.getOutput(0));
-    const auto& input2 = opTensor.getInput(2)->refCastFrom(input2Fallback, *opTensor.getOutput(0));
+    const auto& input0 = op_.getInput(0)->refCastFrom(input0Fallback, *op_.getOutput(0));
+    const auto& input1 = op_.getInput(1)->refCastFrom(input1Fallback, *op_.getOutput(0));
+    const auto& input2 = op_.getInput(2)->refCastFrom(input2Fallback, *op_.getOutput(0));
 
     // Call kernel
-    kernelFunc(dynamic_cast<const Conv_Op<2>&>(mOp).getStaticAttributes(), // Conv attributes
-               opTensor.getInput(0)->template dims<4>(), // input dimensions
-               dynamic_cast<const Conv_Op<2>&>(mOp).outChannels(), // outChannels
-               input0.getImpl()->rawPtr(), // input
-               input1.getImpl()->rawPtr(), // weight
-               input2.getImpl()->rawPtr(), // bias
-               getCPUPtr(mOp.getRawOutput(0)) // output
+    kernelFunc(op_.strideDims(),
+            op_.dilationDims(),
+            op_.kernelDims(),
+            op_.noBias(), // Conv attributes
+            op_.getInput(0)->template dims<4>(), // input dimensions
+            dynamic_cast<const Conv_Op<2>&>(mOp).outChannels(), // outChannels
+            input0.getImpl()->rawPtr(), // input
+            input1.getImpl()->rawPtr(), // weight
+            input2.getImpl()->rawPtr(), // bias
+            getCPUPtr(mOp.getRawOutput(0)) // output
             );
 }
diff --git a/src/operator/FCImpl.cpp b/src/operator/FCImpl.cpp
index 9ade584146cd14b22dfb7a0e31147f136dd5fc8a..b8f1cfe3bd9d4005fd1130c64efb7ed51fcd9dff 100644
--- a/src/operator/FCImpl.cpp
+++ b/src/operator/FCImpl.cpp
@@ -61,7 +61,7 @@ void Aidge::FCImpl_cpu::forward()
 
     // Call kernel
     const auto batchSize = (input0.dims().size() > 1) ? input0.dims()[0] : 1;
-    kernelFunc(dynamic_cast<const FC_Op&>(mOp).getStaticAttributes(),
+    kernelFunc(op_.noBias(),
         batchSize,
         input1.dims()[1], // nb input features
         input1.dims()[0], // nb output features
@@ -107,7 +107,7 @@ void Aidge::FCImpl_cpu::backward()
 
     // Call kernel
     const auto batchSize = (input0grad.dims().size() > 1) ? input0grad.dims()[0] : 1;
-    kernelFunc(dynamic_cast<const FC_Op&>(mOp).getStaticAttributes(),
+    kernelFunc(op_.noBias(),
         batchSize,
         input1grad.dims()[1], // nb input features
         input1grad.dims()[0], // nb output features
diff --git a/src/operator/LeakyReLUImpl.cpp b/src/operator/LeakyReLUImpl.cpp
index 340af3eeaf370988f9b12d8535812c938e47078a..9d4f2a7edcdf263751ec1d9cea10cd4d60055610 100644
--- a/src/operator/LeakyReLUImpl.cpp
+++ b/src/operator/LeakyReLUImpl.cpp
@@ -9,18 +9,19 @@
  *
  ********************************************************************************/
 
-#include <cassert>
+#include "aidge/backend/cpu/operator/LeakyReLUImpl.hpp"
+
 #include <vector>
 
+#include "aidge/backend/cpu/data/GetCPUPtr.h"
+#include "aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp"
+#include "aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp"
 #include "aidge/data/Tensor.hpp"
 #include "aidge/operator/LeakyReLU.hpp"
+#include "aidge/utils/Log.hpp"
 #include "aidge/utils/Types.h"
 #include "aidge/utils/Registrar.hpp"
-#include "aidge/backend/cpu/data/GetCPUPtr.h"
 
-#include "aidge/backend/cpu/operator/LeakyReLUImpl.hpp"
-#include "aidge/backend/cpu/operator/LeakyReLUImpl_forward_kernels.hpp"
-#include "aidge/backend/cpu/operator/LeakyReLUImpl_backward_kernels.hpp"
 
 Aidge::Elts_t Aidge::LeakyReLUImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
     // this implementation can be in-place
@@ -29,6 +30,7 @@ Aidge::Elts_t Aidge::LeakyReLUImpl_cpu::getNbRequiredProtected(const Aidge::IOIn
 
 void Aidge::LeakyReLUImpl_cpu::forward() {
     const LeakyReLU_Op& op_ = dynamic_cast<const LeakyReLU_Op&>(mOp);
+
     std::shared_ptr<Tensor> in0 = op_.getInput(0);
     std::shared_ptr<Tensor> out0 = op_.getOutput(0);
     AIDGE_ASSERT(in0, "missing input #0");
@@ -39,7 +41,7 @@ void Aidge::LeakyReLUImpl_cpu::forward() {
         out0->dataType()});
 
     // Call kernel
-    kernelFunc(dynamic_cast<const LeakyReLU_Op&>(mOp).getStaticAttributes(),
+    kernelFunc(op_.negativeSlope(),
         in0->size(),
         getCPUPtr(mOp.getRawInput(0)),
         getCPUPtr(mOp.getRawOutput(0)));
@@ -58,7 +60,7 @@ void Aidge::LeakyReLUImpl_cpu::backward() {
         out0->dataType()});
 
     // Call kernel
-    kernelFunc(dynamic_cast<const LeakyReLU_Op&>(mOp).getStaticAttributes(),
+    kernelFunc(op_.negativeSlope(),
         in0->size(),
         getCPUPtr(in0),
         getCPUPtr(out0));
diff --git a/src/operator/MaxPoolingImpl.cpp b/src/operator/MaxPoolingImpl.cpp
index 94591eaa9848b24aeb7afa1e8b6b87a3e6e2b45f..2e6d67abbdd6776a1f75449a0f4562143cbaae87 100644
--- a/src/operator/MaxPoolingImpl.cpp
+++ b/src/operator/MaxPoolingImpl.cpp
@@ -9,17 +9,16 @@
  *
  ********************************************************************************/
 
-#include <cassert>
-#include <numeric>
-#include <thread>
+#include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp"
+
 #include <vector>
 
-#include "aidge/utils/Types.h"
 #include "aidge/backend/cpu/data/GetCPUPtr.h"
+#include "aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp"
 #include "aidge/operator/MaxPooling.hpp"
+#include "aidge/utils/Log.hpp"
+#include "aidge/utils/Types.h"
 
-#include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp"
-#include "aidge/backend/cpu/operator/MaxPoolingImpl_forward_kernels.hpp"
 
 Aidge::Elts_t Aidge::MaxPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
     // this implementation can be in-place
@@ -27,15 +26,20 @@ Aidge::Elts_t Aidge::MaxPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*in
 }
 
 void Aidge::MaxPoolingImpl2D_cpu::forward() {
-    assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0");
+    const auto& op_ = dynamic_cast<const MaxPooling_Op<2>&>(mOp);
+    AIDGE_ASSERT(op_.getInput(0), "missing input #0 in MaxPooling Operator.");
 
     // Find the correct kernel type
-    auto kernelFunc =
-            Registrar<MaxPoolingImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
+    auto kernelFunc = Registrar<MaxPoolingImpl2DForward_cpu>::create({
+        op_.getInput(0)->dataType(),
+        op_.getOutput(0)->dataType()
+    });
 
     // Call kernel
-    kernelFunc(dynamic_cast<const MaxPooling_Op<2>&>(mOp).getStaticAttributes(),
-               std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(),
-               getCPUPtr(mOp.getRawInput(0)),
-               getCPUPtr(mOp.getRawOutput(0)));
+    kernelFunc(op_.strideDims(),
+                op_.kernelDims(),
+                op_.ceilMode(),
+                op_.getInput(0)->template dims<4>(),
+                getCPUPtr(mOp.getRawInput(0)),
+                getCPUPtr(mOp.getRawOutput(0)));
 }
diff --git a/src/operator/PadImpl.cpp b/src/operator/PadImpl.cpp
index cd420a6241723c5d3fa5836838f84ce6bfe965d1..8ab812188127f989270068427402b40c1ff5ea51 100644
--- a/src/operator/PadImpl.cpp
+++ b/src/operator/PadImpl.cpp
@@ -9,10 +9,6 @@
  *
  ********************************************************************************/
 
-#include <cassert>
-#include <chrono>  // std::chrono::milliseconds
-#include <numeric> // std::accumulate
-#include <thread>  // std::this_thread::sleep_for
 #include <vector>
 
 #include "aidge/utils/Types.h"
@@ -34,15 +30,19 @@ Aidge::Elts_t Aidge::PadImpl2D_cpu::getNbRequiredProtected(IOIndex_t inputIdx) c
 }
 
 void Aidge::PadImpl2D_cpu::forward() {
-    assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0");
+    const auto& op_ = dynamic_cast<const Pad_Op<2>&>(mOp);
+    AIDGE_ASSERT(op_.getInput(0), "missing input #0 in Pad Operator.");
 
     // Find the correct kernel type
-    auto kernelFunc =
-            Registrar<PadImpl2DForward_cpu>::create({std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
+    auto kernelFunc = Registrar<PadImpl2DForward_cpu>::create({
+        op_.getInput(0)->dataType(),
+        op_.getOutput(0)->dataType()});
 
     // Call kernel
-    kernelFunc(dynamic_cast<const Pad_Op<2>&>(mOp).getStaticAttributes(),
-                        std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->template dims<4>(),
-                        getCPUPtr(mOp.getRawInput(0)),
-                        getCPUPtr(mOp.getRawOutput(0)));
+    kernelFunc(op_.beginEndBorders(),
+                op_.borderType(),
+                op_.borderValue(),
+                op_.getInput(0)->template dims<4>(),
+                getCPUPtr(mOp.getRawInput(0)),
+                getCPUPtr(mOp.getRawOutput(0)));
 }
diff --git a/src/operator/ReduceMeanImpl.cpp b/src/operator/ReduceMeanImpl.cpp
index a9f17a28a2a47ec7bc50820d587e8d0f359d2bb3..b4cd8ffa9b46aaa1c1d7a2eca947ed0254947fef 100644
--- a/src/operator/ReduceMeanImpl.cpp
+++ b/src/operator/ReduceMeanImpl.cpp
@@ -26,10 +26,11 @@ void Aidge::ReduceMeanImpl_cpu::forward() {
         op_.getOutput(0)->dataType()});
 
     // Call kernel
-    kernelFunc(op_.getStaticAttributes(),
-               op_.getInput(0)->dims(),
-               op_.getInput(0)->getImpl()->rawPtr(),
-               op_.getOutput(0)->getImpl()->rawPtr());
+    kernelFunc(op_.axes(),
+                op_.keepDims(),
+                op_.getInput(0)->dims(),
+                op_.getInput(0)->getImpl()->rawPtr(),
+                op_.getOutput(0)->getImpl()->rawPtr());
 }
 
 // void Aidge::ReduceMeanImpl1D_cpu::forward() {
diff --git a/src/operator/ScalingImpl.cpp b/src/operator/ScalingImpl.cpp
index d0b58702c73f01fb62114d335f5c2342908542ea..db4670836e702f536243aadec36c5ba85b2344c8 100644
--- a/src/operator/ScalingImpl.cpp
+++ b/src/operator/ScalingImpl.cpp
@@ -12,6 +12,7 @@
 #include <cassert>
 #include <numeric>    // std::accumulate
 #include <functional> // std::multiplies
+#include <vector>
 
 #include "aidge/operator/Scaling.hpp"
 
@@ -19,7 +20,6 @@
 #include "aidge/backend/cpu/operator/ScalingImpl_forward_kernels.hpp"
 #include "aidge/utils/Types.h"
 #include "aidge/backend/cpu/data/GetCPUPtr.h"
-#include <vector>
 
 Aidge::Elts_t Aidge::ScalingImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
     // this implementation can be in-place
@@ -27,16 +27,19 @@ Aidge::Elts_t Aidge::ScalingImpl_cpu::getNbRequiredProtected(const Aidge::IOInde
 }
 
 void Aidge::ScalingImpl_cpu::forward() {
-    assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0");
+    const auto& op_ = dynamic_cast<const Scaling_Op&>(mOp);
+    AIDGE_ASSERT(op_.getInput(0), "missing input #0 in Scaling Operator.");
 
     // Find the correct kernel type
     auto kernelFunc = Registrar<ScalingImplForward_cpu>::create({
-        std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
-        std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
+        op_.getInput(0)->dataType(),
+        op_.getOutput(0)->dataType()});
 
     // Call kernel
-    kernelFunc(dynamic_cast<const Scaling_Op&>(mOp).getStaticAttributes(),
-        std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(),
-        getCPUPtr(mOp.getRawInput(0)),
-        getCPUPtr(mOp.getRawOutput(0)));
+    kernelFunc(op_.scalingFactor(),
+            op_.quantizedNbBits(),
+            op_.isOutputUnsigned(),
+            op_.getInput(0)->size(),
+            getCPUPtr(mOp.getRawInput(0)),
+            getCPUPtr(mOp.getRawOutput(0)));
 }
diff --git a/src/operator/SliceImpl.cpp b/src/operator/SliceImpl.cpp
index f6dc901f4759cc86515b1482a4566db4668a48c8..8ffe4dcdd97b58758885b013d0c1770bd98a83ba 100644
--- a/src/operator/SliceImpl.cpp
+++ b/src/operator/SliceImpl.cpp
@@ -9,17 +9,15 @@
  *
  ********************************************************************************/
 
-#include <cassert>
-#include <numeric>    // std::accumulate
-#include <functional> // std::multiplies
+#include "aidge/backend/cpu/operator/SliceImpl.hpp"
 
-#include "aidge/operator/Slice.hpp"
+#include <vector>
 
-#include "aidge/backend/cpu/operator/SliceImpl.hpp"
+#include "aidge/backend/cpu/data/GetCPUPtr.h"
 #include "aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp"
+#include "aidge/operator/Slice.hpp"
+#include "aidge/utils/Log.hpp"
 #include "aidge/utils/Types.h"
-#include "aidge/backend/cpu/data/GetCPUPtr.h"
-#include <vector>
 
 Aidge::Elts_t Aidge::SliceImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
     // this implementation can be in-place
@@ -27,16 +25,20 @@ Aidge::Elts_t Aidge::SliceImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_
 }
 
 void Aidge::SliceImpl_cpu::forward() {
-    assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0");
+    const auto& op_ = dynamic_cast<const Slice_Op&>(mOp);
+    AIDGE_ASSERT(op_.getInput(0), "missing input #0 in Slice Operator.");
 
     // Find the correct kernel type
     auto kernelFunc = Registrar<SliceImplForward_cpu>::create({
-        std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
-        std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
+        op_.getInput(0)->dataType(),
+        op_.getOutput(0)->dataType()});
 
     // Call kernel
-    kernelFunc(dynamic_cast<const Slice_Op&>(mOp).getStaticAttributes(),
-        std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(),
-        getCPUPtr(mOp.getRawInput(0)),
-        getCPUPtr(mOp.getRawOutput(0)));
+    kernelFunc(op_.starts(),
+            op_.ends(),
+            op_.axes(),
+            op_.steps(),
+            op_.getInput(0)->dims(),
+            getCPUPtr(mOp.getRawInput(0)),
+            getCPUPtr(mOp.getRawOutput(0)));
 }
diff --git a/src/operator/SoftmaxImpl.cpp b/src/operator/SoftmaxImpl.cpp
index ed3d625dca61b39e383762a59a26e483e956e1c8..5bc3699e2146e36a63b4a1602ca1cb86e3ff1e2f 100644
--- a/src/operator/SoftmaxImpl.cpp
+++ b/src/operator/SoftmaxImpl.cpp
@@ -28,18 +28,18 @@ Aidge::Elts_t Aidge::SoftmaxImpl_cpu::getNbRequiredProtected(const Aidge::IOInde
 }
 
 void Aidge::SoftmaxImpl_cpu::forward() {
-    assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0)) && "missing input #0");
-    assert(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->nbDims()>1);
+    const auto& op_ = dynamic_cast<const Softmax_Op&>(mOp);
+    AIDGE_ASSERT(!op_.getInput(0)->empty(), "Softmax input empty");
 
     // Find the correct kernel type
     auto kernelFunc = Registrar<SoftmaxImplForward_cpu>::create({
-        std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
-        std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
+        op_.getInput(0)->dataType(),
+        op_.getOutput(0)->dataType()});
 
-    Softmax_Op::Attrs attr = dynamic_cast<const Softmax_Op&>(mOp).getStaticAttributes();
+    std::int32_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis();
 
     // Call kernel
-    kernelFunc(std::get<0>(attr), // axisIdx
+    kernelFunc(static_cast<std::size_t>(axis), // axisIdx
                std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(),
                std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(),
                std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr());
diff --git a/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp b/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp
index 43903100a163b4499ed96c44d77ad119534d2eaa..d5f2065b624de431b43edef9a83bf079905129dd 100644
--- a/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp
+++ b/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp
@@ -237,7 +237,7 @@ TEST_CASE("[cpu/operator] GlobalAveragePooling",
             REQUIRE(Tres->dims().at(i) == op->getOutput(0)->dims().at(i));
           }
 
-          REQUIRE(approxEq<float>(*(op->getOutput(0)), *Tres));
+          REQUIRE(approxEq<float>(*(op->getOutput(0)), *Tres, 1e-4f));
 
           delete[] array0;
           delete[] result;
diff --git a/unit_tests/operator/Test_MetaOperator.cpp b/unit_tests/operator/Test_MetaOperator.cpp
index 78058eca33a1ab7a23f4f6a12703fc85ed17bb89..56005f31d9f133bc7248adc3f71ce03015e8829c 100644
--- a/unit_tests/operator/Test_MetaOperator.cpp
+++ b/unit_tests/operator/Test_MetaOperator.cpp
@@ -344,13 +344,12 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
         myLSTM->input(8).first->getOperator()->setOutput(0, myInitR);
 
         auto g = getConnectedGraphView(myLSTM);
-        g->setDataType(DataType::Float32);
-        g->setBackend("cpu");
+        g->compile("cpu", DataType::Float32);
 
         g->save("lstm_seq", true, true);
 
         auto scheduler = SequentialScheduler(g);
-        scheduler.forward(true);
+        scheduler.forward();
         scheduler.saveSchedulingDiagram("lstm_seq_schedule");
 
         std::shared_ptr<Tensor> myHiddenState = std::make_shared<Tensor>(
diff --git a/unit_tests/recipies/Test_HorizontalTiling.cpp b/unit_tests/recipies/Test_HorizontalTiling.cpp
index 2c10cdf369d7d37ea67b70b9dfe3e76018da2a32..7c127548417492141c3ea1eeb9374042befe75d2 100644
--- a/unit_tests/recipies/Test_HorizontalTiling.cpp
+++ b/unit_tests/recipies/Test_HorizontalTiling.cpp
@@ -174,7 +174,7 @@ TEST_CASE("[core/recipes] Tiling(transformation)", "[Tiling][Recipes]") {
             REQUIRE(*(std::dynamic_pointer_cast<Conv_Op<2>>(myConv->getOperator())->getOutput(0)) == *myOutput);
 
             GraphView::replace({myConv, myConv->getParent(1), myConv->getParent(2)}, tiledConv);
-            g->compile("cpu", DataType::Int32);
+            g->compile("cpu", DataType::Int32, 0, {{2,3,5,5}});  // changes myInput DataType from Int32 to Float32. Why??????
             s.resetScheduling();
             s.forward();