diff --git a/include/aidge/backend/cpu/operator/SliceImpl.hpp b/include/aidge/backend/cpu/operator/SliceImpl.hpp
index 80e2f0fcef83a369561095f8e55a437f7acc9675..1cba5906064c51a4f0da2f1f3682b0828a080d43 100644
--- a/include/aidge/backend/cpu/operator/SliceImpl.hpp
+++ b/include/aidge/backend/cpu/operator/SliceImpl.hpp
@@ -13,7 +13,6 @@
 #define AIDGE_CPU_OPERATOR_SLICEIMPL_H_
 
 #include <memory>
-#include <tuple>
 #include <vector>
 
 #include "aidge/backend/OperatorImpl.hpp"
@@ -39,7 +38,6 @@ class SliceImplBackward_cpu
                               const void*,
                               void*)> {};
 
-
 class SliceImpl_cpu : public OperatorImpl {
 public:
     SliceImpl_cpu(const Slice_Op& op) : OperatorImpl(op) {}
@@ -48,7 +46,6 @@ public:
         return std::make_unique<SliceImpl_cpu>(op);
     }
 
-public:
     NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final;
     NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final;
     NbElts_t getRequiredMemory(const IOIndex_t outputIdx,
@@ -58,14 +55,12 @@ public:
     void updateConsummerProducer() override final;
 
     void forward() override;
-
     void backward() override;
 };
 
-
 namespace {
 static Registrar<Slice_Op> registrarSliceImpl_cpu("cpu", Aidge::SliceImpl_cpu::create);
-}  // namespace
+}
 }  // namespace Aidge
 
-#endif /* AIDGE_CPU_OPERATOR_LEAKYRELUIMPL_H_ */
\ No newline at end of file
+#endif /* AIDGE_CPU_OPERATOR_SLICEIMPL_H_ */
diff --git a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp
index 7eb4b9dc2cb8dddc8b7fdaf4d63b8f1d39d879b0..9f08fab758a1d8c717ccb5f0a0357f94fd86e5e4 100644
--- a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp
+++ b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp
@@ -12,57 +12,73 @@
 #ifndef AIDGE_CPU_OPERATOR_SLICEIMPL_FORWARD_KERNEL_H_
 #define AIDGE_CPU_OPERATOR_SLICEIMPL_FORWARD_KERNEL_H_
 
-#include "aidge/utils/Registrar.hpp"
-#include "aidge/operator/Slice.hpp"
-#include "aidge/backend/cpu/operator/SliceImpl.hpp"
-#include <vector>
 #include <cstddef>
+#include <vector>
 
+#include "aidge/backend/cpu/operator/SliceImpl.hpp"
 #include "aidge/data/Data.hpp"
+#include "aidge/operator/Slice.hpp"
+#include "aidge/utils/Registrar.hpp"
 
 namespace Aidge {
 template <class I>
 void SliceImpl_cpu_forward_kernel(const typename Slice_Op::Attrs& attrs,
-                                     const std::vector<std::size_t> inputDims,
-                                     const void* input_,
-                                     void* output_) {
+                                  const std::vector<std::size_t> inputDims,
+                                  const void* input_,
+                                  void* output_) {
+    std::vector<std::size_t> slicedDims = inputDims;
+
+    std::size_t beginning = 0;
+    DimSize_t nbAxes = std::get<2>(attrs).size();
+    for (std::size_t i = 0; i < nbAxes; ++i) {
+        // For each slice operation get the params and cast them to size_t
+        const std::int64_t axis_ = std::get<2>(attrs)[i];
+        const std::int64_t start_ = std::get<0>(attrs)[i];
+        const std::int64_t end_ = std::get<1>(attrs)[i];
+        const std::size_t axis = axis_ >= 0 ? axis_ : static_cast<std::size_t>(axis_ + static_cast<std::int32_t>(inputDims.size()));
+        const std::size_t start = start_ >= 0 ? start_ : start_ + inputDims[axis];
+        const std::size_t end = end_ >= 0 ? end_ : end_ + inputDims[axis];
+        std::size_t stride = 1;
+        for (std::size_t j = inputDims.size() - 1; j > axis; --j) stride *= inputDims[j];
+        beginning += start * stride;
+        const std::size_t sliceLength = end - start + 1;
+        slicedDims[axis] = sliceLength;
+    }
 
-    const I* input = static_cast<const I*>(input_) + std::get<0>(attrs);
+    const I* input = static_cast<const I*>(input_) + beginning;
     I* output = static_cast<I*>(output_);
-    const std::vector<std::size_t> slicedDims = std::get<1>(attrs);
     const std::size_t nbDims = slicedDims.size();
 
-	// for inputDims = {4,5,5,3} & slicedDims = {3,2,2,1}, substractDims = {1,5,5,3}
+    // for inputDims = {4,5,5,3} & slicedDims = {3,2,2,1}, substractDims = {1,5,5,3}
     std::vector<std::size_t> substractedDims = std::vector<std::size_t>(nbDims);
     for (std::size_t i = 0; i < nbDims; ++i) {
         substractedDims[i] = inputDims[i] - slicedDims[i];
     }
 
-	// for slicedDims = {3,2,2,1}, prodSlicedDims = {12,4,2,1}
+    // for slicedDims = {3,2,2,1}, prodSlicedDims = {12,4,2,1}
     std::vector<std::size_t> prodSlicedDims = std::vector<std::size_t>(nbDims);
-    std::vector<std::size_t> prodInputDims = std::vector<std::size_t>(nbDims+1);
-	prodSlicedDims[nbDims - 1] = slicedDims[nbDims - 1];
-	prodInputDims[nbDims - 1] = inputDims[nbDims - 1];
-	prodInputDims[nbDims] = 1;
-	for (std::size_t i = 2; i <= nbDims; ++i) {
-		prodSlicedDims[nbDims - i] = prodSlicedDims[nbDims - i + 1]*slicedDims[nbDims - i];
-		prodInputDims[nbDims - i] = prodInputDims[nbDims - i + 1]*inputDims[nbDims - i];
-	}
+    std::vector<std::size_t> prodInputDims = std::vector<std::size_t>(nbDims + 1);
+    prodSlicedDims[nbDims - 1] = slicedDims[nbDims - 1];
+    prodInputDims[nbDims - 1] = inputDims[nbDims - 1];
+    prodInputDims[nbDims] = 1;
+    for (std::size_t i = 2; i <= nbDims; ++i) {
+        prodSlicedDims[nbDims - i] = prodSlicedDims[nbDims - i + 1] * slicedDims[nbDims - i];
+        prodInputDims[nbDims - i] = prodInputDims[nbDims - i + 1] * inputDims[nbDims - i];
+    }
 
-	std::size_t j = 0;
-	std::size_t i = 0;
-	for (; j < prodSlicedDims[0];) {
-		output[j] = input[i++];
+    std::size_t j = 0;
+    std::size_t i = 0;
+    for (; j < prodSlicedDims[0];) {
+        output[j] = input[i++];
         ++j;
-		for (std::size_t idx = nbDims - 1; idx > 0; --idx) {
-			i += j % prodSlicedDims[idx] == 0 ? substractedDims[idx]*prodInputDims[idx+1] : 0;
-		}
-	}
+        for (std::size_t idx = nbDims - 1; idx > 0; --idx) {
+            i += j % prodSlicedDims[idx] == 0 ? substractedDims[idx] * prodInputDims[idx + 1] : 0;
+        }
+    }
 }
 
 namespace {
 
-// DIM = 1
 static Registrar<SliceImplForward_cpu> registrarSliceImplForward_cpu_Float32(
         {DataType::Float32}, Aidge::SliceImpl_cpu_forward_kernel<float>);
 static Registrar<SliceImplForward_cpu> registrarSliceImplForward_cpu_Int32(
diff --git a/unit_tests/operator/Test_MetaOperator.cpp b/unit_tests/operator/Test_MetaOperator.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..71646c92fa7f041d695a89858cf21ab0d0336f2c
--- /dev/null
+++ b/unit_tests/operator/Test_MetaOperator.cpp
@@ -0,0 +1,190 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include <catch2/catch_test_macros.hpp>
+#include <cmath>
+#include <cstdlib>
+#include <memory>
+
+#include "aidge/backend/cpu/operator/ConvImpl.hpp"
+#include "aidge/backend/cpu/operator/PadImpl.hpp"
+#include "aidge/data/Tensor.hpp"
+#include "aidge/operator/Conv.hpp"
+#include "aidge/operator/MetaOperator.hpp"
+#include "aidge/operator/MetaOperatorDefs.hpp"
+#include "aidge/operator/Pad.hpp"
+
+using namespace Aidge;
+
+TEST_CASE("[cpu/operator] MetaOperator/PaddedConv(forward)", "[MetaOperator][PaddedConv][CPU]") {
+    std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(
+            Array4D<double, 4, 3, 3, 3>{{{{{6.20986394e-01, 1.19775136e-03, 7.22876095e-02},
+                                          {1.16492919e-01, 8.21634093e-02, 1.17413265e-01},
+                                          {2.23743494e-01, 3.99495413e-01, 5.55552411e-01}},
+                                         {{6.64970077e-01, 9.62199940e-01, 4.87531967e-01},
+                                          {6.12586558e-01, 8.09918671e-02, 8.40649383e-01},
+                                          {4.15264406e-01, 8.28247138e-01, 1.52301135e-01}},
+                                         {{1.76992844e-02, 7.78697112e-01, 8.14531592e-01},
+                                          {1.36960611e-01, 4.64806728e-01, 4.85150000e-01},
+                                          {4.34776520e-01, 9.51740977e-01, 9.05793799e-01}}},
+
+                                        {{{1.71925246e-02, 1.91082720e-01, 3.67982644e-01},
+                                          {1.56806559e-01, 6.22280998e-01, 3.15827594e-01},
+                                          {6.04359038e-01, 2.83095947e-01, 6.11168892e-01}},
+                                         {{2.76942832e-01, 1.89768419e-01, 8.07988176e-01},
+                                          {1.67925807e-01, 2.68356150e-01, 6.28875602e-01},
+                                          {1.69093357e-04, 9.64788636e-01, 7.29254981e-01}},
+                                         {{6.34030122e-01, 1.32087038e-01, 3.33857107e-01},
+                                          {7.63047502e-01, 5.12539506e-02, 9.77400493e-01},
+                                          {8.06151288e-01, 2.60237147e-01, 3.93729313e-01}}},
+
+                                        {{{5.84605240e-01, 4.74648725e-01, 8.54111741e-01},
+                                          {7.10897067e-02, 5.02579011e-01, 3.35236224e-01},
+                                          {9.08637408e-01, 8.02903830e-01, 2.83929907e-01}},
+                                         {{3.68206999e-01, 9.18579021e-02, 7.33168098e-01},
+                                          {1.59875539e-01, 9.13163381e-01, 3.59806060e-01},
+                                          {1.41295882e-01, 7.00312185e-01, 5.63728289e-01}},
+                                         {{9.39513546e-01, 1.91704891e-01, 1.11454944e-01},
+                                          {5.46298282e-01, 2.89698587e-01, 2.62612651e-01},
+                                          {1.18554992e-01, 4.32147376e-02, 7.53016994e-01}}},
+
+                                        {{{9.53179175e-01, 2.05041054e-02, 1.11318451e-01},
+                                          {8.67878485e-01, 2.93263422e-01, 8.03912714e-01},
+                                          {8.93620255e-01, 1.37831128e-01, 3.83640583e-01}},
+                                         {{3.96020188e-01, 6.24959320e-01, 1.90709175e-01},
+                                          {5.80538620e-01, 6.63031275e-01, 2.07247191e-01},
+                                          {5.65672171e-01, 5.57014317e-01, 9.26909496e-01}},
+                                         {{3.43901418e-01, 4.47741636e-01, 6.59249367e-01},
+                                          {7.34639028e-01, 2.84957200e-02, 9.70225217e-01},
+                                          {1.33578790e-02, 6.12054702e-01, 9.36685235e-02}}}}});
+    std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(
+            Array1D<double, 4>{{0.16884905, 0.27994487, 0.57227465, 0.06435205}});
+    std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<double, 2, 3, 5, 5>{
+            // NCHW
+            {{{{0.43224481, 0.9047832, 0.18402257, 0.06162838, 0.52490127},
+               {0.27773404, 0.55402353, 0.9485062, 0.31197083, 0.80328607},
+               {0.85065842, 0.88226201, 0.54971951, 0.23360494, 0.53907884},
+               {0.33423098, 0.79564312, 0.80419414, 0.76839638, 0.87248221},
+               {0.77328729, 0.65749407, 0.47277589, 0.32889198, 0.93970518}},
+
+              {{0.66669145, 0.64193351, 0.45315988, 0.32794057, 0.38461822},
+               {0.72295814, 0.18395073, 0.85909664, 0.30010301, 0.56065865},
+               {0.34777938, 0.77869746, 0.33159421, 0.19540932, 0.77767906},
+               {0.5778391, 0.08218411, 0.27758371, 0.99017749, 0.61827997},
+               {0.10440745, 0.3197831, 0.89157608, 0.12216887, 0.950232}},
+
+              {{0.68073443, 0.2681118, 0.51848834, 0.62864493, 0.36717478},
+               {0.64106244, 0.43779425, 0.02771029, 0.78275231, 0.45693104},
+               {0.6487417, 0.01603838, 0.73869997, 0.96494221, 0.39588782},
+               {0.5975827, 0.90913292, 0.55036969, 0.4747373, 0.62460509},
+               {0.79675124, 0.02807549, 0.53227602, 0.88805927, 0.96646591}}},
+
+             {{{0.81851935, 0.21267665, 0.01580692, 0.54907998, 0.89010049},
+               {0.80165784, 0.55195592, 0.20740314, 0.22782844, 0.89205031},
+               {0.94217108, 0.58434542, 0.20738313, 0.79065873, 0.9371597},
+               {0.02254708, 0.95539178, 0.95165758, 0.53736666, 0.49100362},
+               {0.08018625, 0.69108027, 0.00329741, 0.74565761, 0.30899213}},
+
+              {{0.34868638, 0.12792604, 0.37382248, 0.0374756, 0.50653087},
+               {0.59614405, 0.64820746, 0.31470307, 0.62460364, 0.29253268},
+               {0.92864889, 0.51014224, 0.08921206, 0.11094072, 0.64691121},
+               {0.50586371, 0.6686477, 0.72511169, 0.41681783, 0.6325049},
+               {0.71594137, 0.73382767, 0.36589439, 0.03255165, 0.75006865}},
+
+              {{0.6294127, 0.85548534, 0.0902963, 0.28915773, 0.36564289},
+               {0.95873236, 0.6742374, 0.55679676, 0.6323497, 0.34072958},
+               {0.49694061, 0.79173045, 0.19738225, 0.14755281, 0.80818177},
+               {0.02332061, 0.74270703, 0.59415632, 0.08195934, 0.46295434},
+               {0.71426058, 0.85032931, 0.90750818, 0.28768431, 0.4401146}}}}});
+
+    std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(
+            Array4D<double, 2, 4, 5, 5>{{{{{3.40294218, 3.74021220, 4.02050114, 4.07054710, 2.46286273},
+                {4.61770582, 6.70517588, 6.50356627, 6.29688787, 3.53332567},
+                {5.47480106, 5.92094421, 6.64605665, 7.95090199, 4.28721523},
+                {4.01485729, 6.06748962, 7.52447891, 7.37980652, 5.28401136},
+                {2.83065438, 3.62033439, 3.56222963, 5.56103945, 3.23335814}},
+
+                {{3.30230498, 4.92814112, 4.34710836, 3.96262765, 2.97987890},
+                {4.49693012, 6.68929291, 5.53603029, 5.68874264, 4.28756475},
+                {4.20528078, 6.82776880, 6.70569849, 7.12809610, 4.40845442},
+                {4.31169367, 6.73352146, 6.30962515, 7.45826864, 4.99164438},
+                {2.18136287, 4.28968000, 4.20080042, 4.89814138, 2.87394023}},
+
+                {{3.54787683, 4.35851812, 4.63881302, 4.23359537, 3.16992092},
+                {5.25099468, 7.54282856, 6.69849157, 5.64309788, 4.56919575},
+                {4.71914101, 7.52830601, 6.71450949, 7.81113863, 5.84658146},
+                {4.97893143, 7.39293909, 6.89905310, 8.14430809, 5.62998581},
+                {2.79735112, 4.80967140, 5.57630205, 5.38828325, 4.57078695}},
+
+                {{3.03048635, 5.04540300, 4.21824932, 4.87323284, 2.35113740},
+                {4.45167351, 6.47721338, 7.40922976, 6.70445728, 3.60700107},
+                {3.77927423, 6.82826376, 7.41777134, 7.57402420, 5.13131523},
+                {4.08747244, 7.07994175, 7.57206821, 8.51897335, 5.26987123},
+                {2.34426999, 4.60127831, 4.86486769, 6.01579571, 3.97803569}}},
+
+
+                {{{3.84700942, 4.25972605, 3.05269003, 3.78043652, 2.08771229},
+                {6.00459957, 6.05633259, 4.45951605, 4.54089880, 4.03066444},
+                {5.41579390, 7.29543972, 6.18680000, 5.58812714, 3.45964241},
+                {6.04531050, 7.70924091, 5.52207708, 5.02131319, 4.09403706},
+                {3.18092418, 4.45422697, 4.04294252, 3.86577177, 2.18776536}},
+
+                {{4.02600670, 4.27603531, 3.81011319, 4.03631020, 2.57254648},
+                {5.33471155, 5.72588634, 5.12079763, 5.11733150, 3.76836705},
+                {5.62947607, 5.92492962, 6.24170446, 6.44130468, 3.44276404},
+                {5.38414621, 6.02679539, 5.88985586, 5.90263271, 3.15044069},
+                {3.31261086, 4.44371319, 3.47660780, 4.15411520, 1.48961508}},
+
+                {{3.95879412, 4.17324543, 3.70114422, 3.27447152, 3.09713888},
+                {5.78258181, 6.57920837, 4.99913597, 6.20961237, 4.98552179},
+                {5.84685421, 7.19971228, 6.66386652, 6.68013430, 4.90963316},
+                {5.24417877, 7.06430531, 6.58512402, 6.02492285, 4.48986387},
+                {3.64294529, 5.00678444, 5.04760027, 4.72895622, 2.67990756}},
+
+                {{3.48610687, 4.12853813, 4.07563591, 3.51327014, 2.44217038},
+                {4.80529881, 7.33211374, 5.14774036, 4.77281189, 4.44612408},
+                {5.11703110, 7.55168772, 7.14374542, 6.43696356, 4.10621357},
+                {5.41270018, 6.85949135, 6.73503923, 5.74601364, 4.46150303},
+                {3.16612267, 4.38248920, 5.23248482, 4.21292210, 2.86031270}}}}});
+
+    std::shared_ptr<Node> myConv = Conv<2>(3, 4, {3, 3}, "myconv");
+    auto convOp = std::static_pointer_cast<OperatorTensor>(myConv->getOperator());
+
+    std::shared_ptr<Node> myPad =
+            Pad<2>({1, 1, 1, 1}, "myPad", PadBorderType::Constant, 0.0);
+    auto padOp = std::static_pointer_cast<OperatorTensor>(myPad->getOperator());
+
+    convOp->setInput(1, myWeights);
+    convOp->setInput(2, myBias);
+
+    myPad->addChild(myConv, 0, 0);
+    padOp->setInput(0, myInput);
+
+    padOp->setDataType(DataType::Float64);
+    padOp->setBackend("cpu");
+    padOp->computeOutputDims();
+    convOp->setDataType(DataType::Float64);
+    convOp->setBackend("cpu");
+    convOp->computeOutputDims();
+
+    myPad->forward();
+    myConv->forward();
+    convOp -> getOutput(0) -> print();
+
+    double* computedOutput = static_cast<double*>(convOp->getOutput(0)->getImpl()->rawPtr());
+    double* expectedOutput = static_cast<double*>(myOutput->getImpl()->rawPtr());
+    for (std::size_t i = 0; i < myOutput->size(); ++i) {
+        REQUIRE(std::abs(computedOutput[i] - expectedOutput[i]) < 1e-5);
+    }
+
+    std::shared_ptr<Node> myPaddedConv =
+            PaddedConv(3, 4, {3, 3}, "myPaddedConv", {1, 1}, {1, 1, 1, 1});
+}
\ No newline at end of file
diff --git a/unit_tests/operator/Test_SliceImpl.cpp b/unit_tests/operator/Test_SliceImpl.cpp
index 3e25c28f9caac61c64d38fa70879af79d20392bc..7a71f31e9850852cadd659c91683c30ddcbe9849 100644
--- a/unit_tests/operator/Test_SliceImpl.cpp
+++ b/unit_tests/operator/Test_SliceImpl.cpp
@@ -27,14 +27,14 @@ TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") {
             {0, 1, 2,-3}
         });
 
-        std::shared_ptr<Node> mySlice = Slice(0, {4});
+        std::shared_ptr<Node> mySlice = Slice({0}, {3}, {0});
         auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator());
         mySlice->getOperator()->associateInput(0,input0);
         mySlice->getOperator()->setDataType(DataType::Int32);
         mySlice->getOperator()->setBackend("cpu");
         op->computeOutputDims();
         mySlice->forward();
-        // mySlice->getOperator()->output(0).print();
+
         REQUIRE(*(op->getOutput(0)) == *expectedOutput);
         REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims());
         REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType());
@@ -54,7 +54,7 @@ TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") {
             }
         });
 
-        std::shared_ptr<Node> mySlice = Slice(5, {2,3});
+        std::shared_ptr<Node> mySlice = Slice({0,5}, {1,7}, {0,1});
         auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator());
         mySlice->getOperator()->associateInput(0,input0);
         mySlice->getOperator()->setDataType(DataType::Int32);
@@ -88,7 +88,7 @@ TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") {
             }
         });
 
-        std::shared_ptr<Node> mySlice = Slice(14, {1,1,3});
+        std::shared_ptr<Node> mySlice = Slice({0,1,4}, {0,1,6}, {0,1,2});
         auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator());
         mySlice->getOperator()->associateInput(0,input0);
         mySlice->getOperator()->setDataType(DataType::Int32);
@@ -151,7 +151,7 @@ TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") {
             }
         });
 
-        std::shared_ptr<Node> mySlice = Slice(0, {2,2,2,10});
+        std::shared_ptr<Node> mySlice = Slice({0,0,0,0}, {1,1,1,9}, {0,1,2,3});
         auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator());
         mySlice->getOperator()->associateInput(0,input0);
         mySlice->getOperator()->setDataType(DataType::Int32);
diff --git a/unit_tests/operator/Test_SoftmaxImpl.cpp b/unit_tests/operator/Test_SoftmaxImpl.cpp
index 3d3c9fe4a0de0183e9069b814084aa80019adf0f..360b7440599030dbd93954e345f0d5986eb83b15 100644
--- a/unit_tests/operator/Test_SoftmaxImpl.cpp
+++ b/unit_tests/operator/Test_SoftmaxImpl.cpp
@@ -39,7 +39,7 @@ TEST_CASE("[cpu/operator] Softmax(forward)", "[Softmax][CPU]") {
             }
         });
 
-        std::shared_ptr<Node> mySoftmax = Softmax();
+        std::shared_ptr<Node> mySoftmax = Softmax(1);
         auto op = std::static_pointer_cast<OperatorTensor>(mySoftmax -> getOperator());
         mySoftmax->getOperator()->associateInput(0,input);
         mySoftmax->getOperator()->setDataType(DataType::Float32);
@@ -108,7 +108,7 @@ TEST_CASE("[cpu/operator] Softmax(forward)", "[Softmax][CPU]") {
             }
         });
 
-        std::shared_ptr<Node> mySoftmax = Softmax();
+        std::shared_ptr<Node> mySoftmax = Softmax(1);
         auto op = std::static_pointer_cast<OperatorTensor>(mySoftmax -> getOperator());
         mySoftmax->getOperator()->associateInput(0,input);
         mySoftmax->getOperator()->setDataType(DataType::Float32);
diff --git a/unit_tests/recipies/Test_HorizontalTiling.cpp b/unit_tests/recipies/Test_HorizontalTiling.cpp
index b71a01d130a783caf5c643dfb0c3757b1c524e5e..268d94cc55821c41f9c3d4a8451b5730ecaf1bd0 100644
--- a/unit_tests/recipies/Test_HorizontalTiling.cpp
+++ b/unit_tests/recipies/Test_HorizontalTiling.cpp
@@ -183,26 +183,4 @@ TEST_CASE("[core/recipies] Tiling(transformation)", "[Tiling][Recipies]") {
         }
     }
 }
-}
-        // std::shared_ptr<GraphView> g = Sequential({
-        //     Conv(3, 16, {3,3}, "conv1"),
-        //     ReLU("relu1"),
-        //     Conv(16, 32, {1,1}, "conv2"),
-        //     Conv(32, 16, {1,1}, "conv3"),
-        //     Conv(16, 10, {3,3}, "conv4"),
-        //     ReLU("relu2")
-        // });
-
-    //     for (auto& individualConv : g->match("Conv")) {
-    //         auto tiledConv = horizontalTiling(individualConv);
-    //         g->replace(individualConv, tiledConv);
-    //     }
-    // }
-
-    // SECTION("Create the GraphView with tiled layers") {
-    //     std::shared_ptr<GraphView> g;
-    //     g->addChild(horizontalTiling(Conv()))
-    // }
-
-// }
-// } // namespace Aidge
\ No newline at end of file
+} // namespace Aidge
\ No newline at end of file