diff --git a/include/aidge/backend/cpu/operator/SliceImpl.hpp b/include/aidge/backend/cpu/operator/SliceImpl.hpp index 80e2f0fcef83a369561095f8e55a437f7acc9675..1cba5906064c51a4f0da2f1f3682b0828a080d43 100644 --- a/include/aidge/backend/cpu/operator/SliceImpl.hpp +++ b/include/aidge/backend/cpu/operator/SliceImpl.hpp @@ -13,7 +13,6 @@ #define AIDGE_CPU_OPERATOR_SLICEIMPL_H_ #include <memory> -#include <tuple> #include <vector> #include "aidge/backend/OperatorImpl.hpp" @@ -39,7 +38,6 @@ class SliceImplBackward_cpu const void*, void*)> {}; - class SliceImpl_cpu : public OperatorImpl { public: SliceImpl_cpu(const Slice_Op& op) : OperatorImpl(op) {} @@ -48,7 +46,6 @@ public: return std::make_unique<SliceImpl_cpu>(op); } -public: NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final; NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final; NbElts_t getRequiredMemory(const IOIndex_t outputIdx, @@ -58,14 +55,12 @@ public: void updateConsummerProducer() override final; void forward() override; - void backward() override; }; - namespace { static Registrar<Slice_Op> registrarSliceImpl_cpu("cpu", Aidge::SliceImpl_cpu::create); -} // namespace +} } // namespace Aidge -#endif /* AIDGE_CPU_OPERATOR_LEAKYRELUIMPL_H_ */ \ No newline at end of file +#endif /* AIDGE_CPU_OPERATOR_SLICEIMPL_H_ */ diff --git a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp index 7eb4b9dc2cb8dddc8b7fdaf4d63b8f1d39d879b0..9f08fab758a1d8c717ccb5f0a0357f94fd86e5e4 100644 --- a/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp +++ b/include/aidge/backend/cpu/operator/SliceImpl_forward_kernels.hpp @@ -12,57 +12,73 @@ #ifndef AIDGE_CPU_OPERATOR_SLICEIMPL_FORWARD_KERNEL_H_ #define AIDGE_CPU_OPERATOR_SLICEIMPL_FORWARD_KERNEL_H_ -#include "aidge/utils/Registrar.hpp" -#include "aidge/operator/Slice.hpp" -#include "aidge/backend/cpu/operator/SliceImpl.hpp" -#include <vector> #include <cstddef> +#include <vector> +#include "aidge/backend/cpu/operator/SliceImpl.hpp" #include "aidge/data/Data.hpp" +#include "aidge/operator/Slice.hpp" +#include "aidge/utils/Registrar.hpp" namespace Aidge { template <class I> void SliceImpl_cpu_forward_kernel(const typename Slice_Op::Attrs& attrs, - const std::vector<std::size_t> inputDims, - const void* input_, - void* output_) { + const std::vector<std::size_t> inputDims, + const void* input_, + void* output_) { + std::vector<std::size_t> slicedDims = inputDims; + + std::size_t beginning = 0; + DimSize_t nbAxes = std::get<2>(attrs).size(); + for (std::size_t i = 0; i < nbAxes; ++i) { + // For each slice operation get the params and cast them to size_t + const std::int64_t axis_ = std::get<2>(attrs)[i]; + const std::int64_t start_ = std::get<0>(attrs)[i]; + const std::int64_t end_ = std::get<1>(attrs)[i]; + const std::size_t axis = axis_ >= 0 ? axis_ : static_cast<std::size_t>(axis_ + static_cast<std::int32_t>(inputDims.size())); + const std::size_t start = start_ >= 0 ? start_ : start_ + inputDims[axis]; + const std::size_t end = end_ >= 0 ? end_ : end_ + inputDims[axis]; + std::size_t stride = 1; + for (std::size_t j = inputDims.size() - 1; j > axis; --j) stride *= inputDims[j]; + beginning += start * stride; + const std::size_t sliceLength = end - start + 1; + slicedDims[axis] = sliceLength; + } - const I* input = static_cast<const I*>(input_) + std::get<0>(attrs); + const I* input = static_cast<const I*>(input_) + beginning; I* output = static_cast<I*>(output_); - const std::vector<std::size_t> slicedDims = std::get<1>(attrs); const std::size_t nbDims = slicedDims.size(); - // for inputDims = {4,5,5,3} & slicedDims = {3,2,2,1}, substractDims = {1,5,5,3} + // for inputDims = {4,5,5,3} & slicedDims = {3,2,2,1}, substractDims = {1,5,5,3} std::vector<std::size_t> substractedDims = std::vector<std::size_t>(nbDims); for (std::size_t i = 0; i < nbDims; ++i) { substractedDims[i] = inputDims[i] - slicedDims[i]; } - // for slicedDims = {3,2,2,1}, prodSlicedDims = {12,4,2,1} + // for slicedDims = {3,2,2,1}, prodSlicedDims = {12,4,2,1} std::vector<std::size_t> prodSlicedDims = std::vector<std::size_t>(nbDims); - std::vector<std::size_t> prodInputDims = std::vector<std::size_t>(nbDims+1); - prodSlicedDims[nbDims - 1] = slicedDims[nbDims - 1]; - prodInputDims[nbDims - 1] = inputDims[nbDims - 1]; - prodInputDims[nbDims] = 1; - for (std::size_t i = 2; i <= nbDims; ++i) { - prodSlicedDims[nbDims - i] = prodSlicedDims[nbDims - i + 1]*slicedDims[nbDims - i]; - prodInputDims[nbDims - i] = prodInputDims[nbDims - i + 1]*inputDims[nbDims - i]; - } + std::vector<std::size_t> prodInputDims = std::vector<std::size_t>(nbDims + 1); + prodSlicedDims[nbDims - 1] = slicedDims[nbDims - 1]; + prodInputDims[nbDims - 1] = inputDims[nbDims - 1]; + prodInputDims[nbDims] = 1; + for (std::size_t i = 2; i <= nbDims; ++i) { + prodSlicedDims[nbDims - i] = prodSlicedDims[nbDims - i + 1] * slicedDims[nbDims - i]; + prodInputDims[nbDims - i] = prodInputDims[nbDims - i + 1] * inputDims[nbDims - i]; + } - std::size_t j = 0; - std::size_t i = 0; - for (; j < prodSlicedDims[0];) { - output[j] = input[i++]; + std::size_t j = 0; + std::size_t i = 0; + for (; j < prodSlicedDims[0];) { + output[j] = input[i++]; ++j; - for (std::size_t idx = nbDims - 1; idx > 0; --idx) { - i += j % prodSlicedDims[idx] == 0 ? substractedDims[idx]*prodInputDims[idx+1] : 0; - } - } + for (std::size_t idx = nbDims - 1; idx > 0; --idx) { + i += j % prodSlicedDims[idx] == 0 ? substractedDims[idx] * prodInputDims[idx + 1] : 0; + } + } } namespace { -// DIM = 1 static Registrar<SliceImplForward_cpu> registrarSliceImplForward_cpu_Float32( {DataType::Float32}, Aidge::SliceImpl_cpu_forward_kernel<float>); static Registrar<SliceImplForward_cpu> registrarSliceImplForward_cpu_Int32( diff --git a/unit_tests/operator/Test_MetaOperator.cpp b/unit_tests/operator/Test_MetaOperator.cpp new file mode 100644 index 0000000000000000000000000000000000000000..71646c92fa7f041d695a89858cf21ab0d0336f2c --- /dev/null +++ b/unit_tests/operator/Test_MetaOperator.cpp @@ -0,0 +1,190 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <cmath> +#include <cstdlib> +#include <memory> + +#include "aidge/backend/cpu/operator/ConvImpl.hpp" +#include "aidge/backend/cpu/operator/PadImpl.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Conv.hpp" +#include "aidge/operator/MetaOperator.hpp" +#include "aidge/operator/MetaOperatorDefs.hpp" +#include "aidge/operator/Pad.hpp" + +using namespace Aidge; + +TEST_CASE("[cpu/operator] MetaOperator/PaddedConv(forward)", "[MetaOperator][PaddedConv][CPU]") { + std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>( + Array4D<double, 4, 3, 3, 3>{{{{{6.20986394e-01, 1.19775136e-03, 7.22876095e-02}, + {1.16492919e-01, 8.21634093e-02, 1.17413265e-01}, + {2.23743494e-01, 3.99495413e-01, 5.55552411e-01}}, + {{6.64970077e-01, 9.62199940e-01, 4.87531967e-01}, + {6.12586558e-01, 8.09918671e-02, 8.40649383e-01}, + {4.15264406e-01, 8.28247138e-01, 1.52301135e-01}}, + {{1.76992844e-02, 7.78697112e-01, 8.14531592e-01}, + {1.36960611e-01, 4.64806728e-01, 4.85150000e-01}, + {4.34776520e-01, 9.51740977e-01, 9.05793799e-01}}}, + + {{{1.71925246e-02, 1.91082720e-01, 3.67982644e-01}, + {1.56806559e-01, 6.22280998e-01, 3.15827594e-01}, + {6.04359038e-01, 2.83095947e-01, 6.11168892e-01}}, + {{2.76942832e-01, 1.89768419e-01, 8.07988176e-01}, + {1.67925807e-01, 2.68356150e-01, 6.28875602e-01}, + {1.69093357e-04, 9.64788636e-01, 7.29254981e-01}}, + {{6.34030122e-01, 1.32087038e-01, 3.33857107e-01}, + {7.63047502e-01, 5.12539506e-02, 9.77400493e-01}, + {8.06151288e-01, 2.60237147e-01, 3.93729313e-01}}}, + + {{{5.84605240e-01, 4.74648725e-01, 8.54111741e-01}, + {7.10897067e-02, 5.02579011e-01, 3.35236224e-01}, + {9.08637408e-01, 8.02903830e-01, 2.83929907e-01}}, + {{3.68206999e-01, 9.18579021e-02, 7.33168098e-01}, + {1.59875539e-01, 9.13163381e-01, 3.59806060e-01}, + {1.41295882e-01, 7.00312185e-01, 5.63728289e-01}}, + {{9.39513546e-01, 1.91704891e-01, 1.11454944e-01}, + {5.46298282e-01, 2.89698587e-01, 2.62612651e-01}, + {1.18554992e-01, 4.32147376e-02, 7.53016994e-01}}}, + + {{{9.53179175e-01, 2.05041054e-02, 1.11318451e-01}, + {8.67878485e-01, 2.93263422e-01, 8.03912714e-01}, + {8.93620255e-01, 1.37831128e-01, 3.83640583e-01}}, + {{3.96020188e-01, 6.24959320e-01, 1.90709175e-01}, + {5.80538620e-01, 6.63031275e-01, 2.07247191e-01}, + {5.65672171e-01, 5.57014317e-01, 9.26909496e-01}}, + {{3.43901418e-01, 4.47741636e-01, 6.59249367e-01}, + {7.34639028e-01, 2.84957200e-02, 9.70225217e-01}, + {1.33578790e-02, 6.12054702e-01, 9.36685235e-02}}}}}); + std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>( + Array1D<double, 4>{{0.16884905, 0.27994487, 0.57227465, 0.06435205}}); + std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<double, 2, 3, 5, 5>{ + // NCHW + {{{{0.43224481, 0.9047832, 0.18402257, 0.06162838, 0.52490127}, + {0.27773404, 0.55402353, 0.9485062, 0.31197083, 0.80328607}, + {0.85065842, 0.88226201, 0.54971951, 0.23360494, 0.53907884}, + {0.33423098, 0.79564312, 0.80419414, 0.76839638, 0.87248221}, + {0.77328729, 0.65749407, 0.47277589, 0.32889198, 0.93970518}}, + + {{0.66669145, 0.64193351, 0.45315988, 0.32794057, 0.38461822}, + {0.72295814, 0.18395073, 0.85909664, 0.30010301, 0.56065865}, + {0.34777938, 0.77869746, 0.33159421, 0.19540932, 0.77767906}, + {0.5778391, 0.08218411, 0.27758371, 0.99017749, 0.61827997}, + {0.10440745, 0.3197831, 0.89157608, 0.12216887, 0.950232}}, + + {{0.68073443, 0.2681118, 0.51848834, 0.62864493, 0.36717478}, + {0.64106244, 0.43779425, 0.02771029, 0.78275231, 0.45693104}, + {0.6487417, 0.01603838, 0.73869997, 0.96494221, 0.39588782}, + {0.5975827, 0.90913292, 0.55036969, 0.4747373, 0.62460509}, + {0.79675124, 0.02807549, 0.53227602, 0.88805927, 0.96646591}}}, + + {{{0.81851935, 0.21267665, 0.01580692, 0.54907998, 0.89010049}, + {0.80165784, 0.55195592, 0.20740314, 0.22782844, 0.89205031}, + {0.94217108, 0.58434542, 0.20738313, 0.79065873, 0.9371597}, + {0.02254708, 0.95539178, 0.95165758, 0.53736666, 0.49100362}, + {0.08018625, 0.69108027, 0.00329741, 0.74565761, 0.30899213}}, + + {{0.34868638, 0.12792604, 0.37382248, 0.0374756, 0.50653087}, + {0.59614405, 0.64820746, 0.31470307, 0.62460364, 0.29253268}, + {0.92864889, 0.51014224, 0.08921206, 0.11094072, 0.64691121}, + {0.50586371, 0.6686477, 0.72511169, 0.41681783, 0.6325049}, + {0.71594137, 0.73382767, 0.36589439, 0.03255165, 0.75006865}}, + + {{0.6294127, 0.85548534, 0.0902963, 0.28915773, 0.36564289}, + {0.95873236, 0.6742374, 0.55679676, 0.6323497, 0.34072958}, + {0.49694061, 0.79173045, 0.19738225, 0.14755281, 0.80818177}, + {0.02332061, 0.74270703, 0.59415632, 0.08195934, 0.46295434}, + {0.71426058, 0.85032931, 0.90750818, 0.28768431, 0.4401146}}}}}); + + std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>( + Array4D<double, 2, 4, 5, 5>{{{{{3.40294218, 3.74021220, 4.02050114, 4.07054710, 2.46286273}, + {4.61770582, 6.70517588, 6.50356627, 6.29688787, 3.53332567}, + {5.47480106, 5.92094421, 6.64605665, 7.95090199, 4.28721523}, + {4.01485729, 6.06748962, 7.52447891, 7.37980652, 5.28401136}, + {2.83065438, 3.62033439, 3.56222963, 5.56103945, 3.23335814}}, + + {{3.30230498, 4.92814112, 4.34710836, 3.96262765, 2.97987890}, + {4.49693012, 6.68929291, 5.53603029, 5.68874264, 4.28756475}, + {4.20528078, 6.82776880, 6.70569849, 7.12809610, 4.40845442}, + {4.31169367, 6.73352146, 6.30962515, 7.45826864, 4.99164438}, + {2.18136287, 4.28968000, 4.20080042, 4.89814138, 2.87394023}}, + + {{3.54787683, 4.35851812, 4.63881302, 4.23359537, 3.16992092}, + {5.25099468, 7.54282856, 6.69849157, 5.64309788, 4.56919575}, + {4.71914101, 7.52830601, 6.71450949, 7.81113863, 5.84658146}, + {4.97893143, 7.39293909, 6.89905310, 8.14430809, 5.62998581}, + {2.79735112, 4.80967140, 5.57630205, 5.38828325, 4.57078695}}, + + {{3.03048635, 5.04540300, 4.21824932, 4.87323284, 2.35113740}, + {4.45167351, 6.47721338, 7.40922976, 6.70445728, 3.60700107}, + {3.77927423, 6.82826376, 7.41777134, 7.57402420, 5.13131523}, + {4.08747244, 7.07994175, 7.57206821, 8.51897335, 5.26987123}, + {2.34426999, 4.60127831, 4.86486769, 6.01579571, 3.97803569}}}, + + + {{{3.84700942, 4.25972605, 3.05269003, 3.78043652, 2.08771229}, + {6.00459957, 6.05633259, 4.45951605, 4.54089880, 4.03066444}, + {5.41579390, 7.29543972, 6.18680000, 5.58812714, 3.45964241}, + {6.04531050, 7.70924091, 5.52207708, 5.02131319, 4.09403706}, + {3.18092418, 4.45422697, 4.04294252, 3.86577177, 2.18776536}}, + + {{4.02600670, 4.27603531, 3.81011319, 4.03631020, 2.57254648}, + {5.33471155, 5.72588634, 5.12079763, 5.11733150, 3.76836705}, + {5.62947607, 5.92492962, 6.24170446, 6.44130468, 3.44276404}, + {5.38414621, 6.02679539, 5.88985586, 5.90263271, 3.15044069}, + {3.31261086, 4.44371319, 3.47660780, 4.15411520, 1.48961508}}, + + {{3.95879412, 4.17324543, 3.70114422, 3.27447152, 3.09713888}, + {5.78258181, 6.57920837, 4.99913597, 6.20961237, 4.98552179}, + {5.84685421, 7.19971228, 6.66386652, 6.68013430, 4.90963316}, + {5.24417877, 7.06430531, 6.58512402, 6.02492285, 4.48986387}, + {3.64294529, 5.00678444, 5.04760027, 4.72895622, 2.67990756}}, + + {{3.48610687, 4.12853813, 4.07563591, 3.51327014, 2.44217038}, + {4.80529881, 7.33211374, 5.14774036, 4.77281189, 4.44612408}, + {5.11703110, 7.55168772, 7.14374542, 6.43696356, 4.10621357}, + {5.41270018, 6.85949135, 6.73503923, 5.74601364, 4.46150303}, + {3.16612267, 4.38248920, 5.23248482, 4.21292210, 2.86031270}}}}}); + + std::shared_ptr<Node> myConv = Conv<2>(3, 4, {3, 3}, "myconv"); + auto convOp = std::static_pointer_cast<OperatorTensor>(myConv->getOperator()); + + std::shared_ptr<Node> myPad = + Pad<2>({1, 1, 1, 1}, "myPad", PadBorderType::Constant, 0.0); + auto padOp = std::static_pointer_cast<OperatorTensor>(myPad->getOperator()); + + convOp->setInput(1, myWeights); + convOp->setInput(2, myBias); + + myPad->addChild(myConv, 0, 0); + padOp->setInput(0, myInput); + + padOp->setDataType(DataType::Float64); + padOp->setBackend("cpu"); + padOp->computeOutputDims(); + convOp->setDataType(DataType::Float64); + convOp->setBackend("cpu"); + convOp->computeOutputDims(); + + myPad->forward(); + myConv->forward(); + convOp -> getOutput(0) -> print(); + + double* computedOutput = static_cast<double*>(convOp->getOutput(0)->getImpl()->rawPtr()); + double* expectedOutput = static_cast<double*>(myOutput->getImpl()->rawPtr()); + for (std::size_t i = 0; i < myOutput->size(); ++i) { + REQUIRE(std::abs(computedOutput[i] - expectedOutput[i]) < 1e-5); + } + + std::shared_ptr<Node> myPaddedConv = + PaddedConv(3, 4, {3, 3}, "myPaddedConv", {1, 1}, {1, 1, 1, 1}); +} \ No newline at end of file diff --git a/unit_tests/operator/Test_SliceImpl.cpp b/unit_tests/operator/Test_SliceImpl.cpp index 3e25c28f9caac61c64d38fa70879af79d20392bc..7a71f31e9850852cadd659c91683c30ddcbe9849 100644 --- a/unit_tests/operator/Test_SliceImpl.cpp +++ b/unit_tests/operator/Test_SliceImpl.cpp @@ -27,14 +27,14 @@ TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") { {0, 1, 2,-3} }); - std::shared_ptr<Node> mySlice = Slice(0, {4}); + std::shared_ptr<Node> mySlice = Slice({0}, {3}, {0}); auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); mySlice->getOperator()->associateInput(0,input0); mySlice->getOperator()->setDataType(DataType::Int32); mySlice->getOperator()->setBackend("cpu"); op->computeOutputDims(); mySlice->forward(); - // mySlice->getOperator()->output(0).print(); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); @@ -54,7 +54,7 @@ TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") { } }); - std::shared_ptr<Node> mySlice = Slice(5, {2,3}); + std::shared_ptr<Node> mySlice = Slice({0,5}, {1,7}, {0,1}); auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); mySlice->getOperator()->associateInput(0,input0); mySlice->getOperator()->setDataType(DataType::Int32); @@ -88,7 +88,7 @@ TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") { } }); - std::shared_ptr<Node> mySlice = Slice(14, {1,1,3}); + std::shared_ptr<Node> mySlice = Slice({0,1,4}, {0,1,6}, {0,1,2}); auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); mySlice->getOperator()->associateInput(0,input0); mySlice->getOperator()->setDataType(DataType::Int32); @@ -151,7 +151,7 @@ TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") { } }); - std::shared_ptr<Node> mySlice = Slice(0, {2,2,2,10}); + std::shared_ptr<Node> mySlice = Slice({0,0,0,0}, {1,1,1,9}, {0,1,2,3}); auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); mySlice->getOperator()->associateInput(0,input0); mySlice->getOperator()->setDataType(DataType::Int32); diff --git a/unit_tests/operator/Test_SoftmaxImpl.cpp b/unit_tests/operator/Test_SoftmaxImpl.cpp index 3d3c9fe4a0de0183e9069b814084aa80019adf0f..360b7440599030dbd93954e345f0d5986eb83b15 100644 --- a/unit_tests/operator/Test_SoftmaxImpl.cpp +++ b/unit_tests/operator/Test_SoftmaxImpl.cpp @@ -39,7 +39,7 @@ TEST_CASE("[cpu/operator] Softmax(forward)", "[Softmax][CPU]") { } }); - std::shared_ptr<Node> mySoftmax = Softmax(); + std::shared_ptr<Node> mySoftmax = Softmax(1); auto op = std::static_pointer_cast<OperatorTensor>(mySoftmax -> getOperator()); mySoftmax->getOperator()->associateInput(0,input); mySoftmax->getOperator()->setDataType(DataType::Float32); @@ -108,7 +108,7 @@ TEST_CASE("[cpu/operator] Softmax(forward)", "[Softmax][CPU]") { } }); - std::shared_ptr<Node> mySoftmax = Softmax(); + std::shared_ptr<Node> mySoftmax = Softmax(1); auto op = std::static_pointer_cast<OperatorTensor>(mySoftmax -> getOperator()); mySoftmax->getOperator()->associateInput(0,input); mySoftmax->getOperator()->setDataType(DataType::Float32); diff --git a/unit_tests/recipies/Test_HorizontalTiling.cpp b/unit_tests/recipies/Test_HorizontalTiling.cpp index b71a01d130a783caf5c643dfb0c3757b1c524e5e..268d94cc55821c41f9c3d4a8451b5730ecaf1bd0 100644 --- a/unit_tests/recipies/Test_HorizontalTiling.cpp +++ b/unit_tests/recipies/Test_HorizontalTiling.cpp @@ -183,26 +183,4 @@ TEST_CASE("[core/recipies] Tiling(transformation)", "[Tiling][Recipies]") { } } } -} - // std::shared_ptr<GraphView> g = Sequential({ - // Conv(3, 16, {3,3}, "conv1"), - // ReLU("relu1"), - // Conv(16, 32, {1,1}, "conv2"), - // Conv(32, 16, {1,1}, "conv3"), - // Conv(16, 10, {3,3}, "conv4"), - // ReLU("relu2") - // }); - - // for (auto& individualConv : g->match("Conv")) { - // auto tiledConv = horizontalTiling(individualConv); - // g->replace(individualConv, tiledConv); - // } - // } - - // SECTION("Create the GraphView with tiled layers") { - // std::shared_ptr<GraphView> g; - // g->addChild(horizontalTiling(Conv())) - // } - -// } -// } // namespace Aidge \ No newline at end of file +} // namespace Aidge \ No newline at end of file