diff --git a/include/aidge/backend/cpu/operator/AvgPoolingImpl_kernels.hpp b/include/aidge/backend/cpu/operator/AvgPoolingImpl_kernels.hpp index 78f8446a1acd86a8d569dc0afb22a2517bcfede0..1671759d25a5965ceca57fc1167534d7986282c4 100644 --- a/include/aidge/backend/cpu/operator/AvgPoolingImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/AvgPoolingImpl_kernels.hpp @@ -23,6 +23,22 @@ #include "aidge/utils/Types.h" namespace Aidge { + +template <typename T> +using Acc_T = typename std::conditional<std::is_floating_point<T>::value, T, double>::type; + +template <typename T> +typename std::enable_if<std::is_floating_point<T>::value, T>::type +castFromFloat(T value) { + return value; +} + +template <typename T> +typename std::enable_if<!std::is_floating_point<T>::value, T>::type +castFromFloat(double value) { + return static_cast<T>(std::nearbyint(value)); +} + /** * @brief Forward kernel for 2D AvgPoolingolution on CPU backend. * @tparam I Input data type. @@ -79,7 +95,7 @@ void AvgPoolingImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideD const std::size_t ix = ox * strideDims[0]; const std::size_t iy = oy * strideDims[1]; - O sum = static_cast<O>(0); + Acc_T<I> sum = static_cast<Acc_T<I>>(0); std::size_t count = 0; for (unsigned int sy = syMin; sy < syMax; ++sy) { @@ -90,13 +106,13 @@ void AvgPoolingImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideD // Ensure within bounds if ((ix + dilated_sx) < dims[2] && (iy + dilated_sy) < dims[3]) { - sum += static_cast<O>(input[iIndex + (ix + dilated_sx) * dims[3] + (iy + dilated_sy)]); + sum += static_cast<Acc_T<I>>(input[iIndex + (ix + dilated_sx) * dims[3] + (iy + dilated_sy)]); ++count; } } } - output[oIndexFull] = count > 0 ? sum / static_cast<O>(count) : 0; + output[oIndexFull] = count > 0 ? castFromFloat<O>(sum / count) : 0; } } } diff --git a/include/aidge/backend/cpu/operator/GlobalAveragePoolingImpl_kernels.hpp b/include/aidge/backend/cpu/operator/GlobalAveragePoolingImpl_kernels.hpp index d5e5561d02aacd8532f74d2bfd4ee2fb5a5b5dc3..7a47ccf3be4de2ee066d2d7c27a6c04f115059b4 100644 --- a/include/aidge/backend/cpu/operator/GlobalAveragePoolingImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/GlobalAveragePoolingImpl_kernels.hpp @@ -38,7 +38,7 @@ stableMean(const T* vec, size_t size) { // Specialization for integers: perform the mean computation in float template <typename T> -typename std::enable_if<!std::is_floating_point<T>::value, T>::type +typename std::enable_if<!std::is_floating_point<T>::value, double>::type stableMean(const T* vec, size_t size) { double mean = 0; for (size_t i = 0; i < size; ++i) { diff --git a/include/aidge/backend/cpu/operator/ReduceMeanImpl_kernels.hpp b/include/aidge/backend/cpu/operator/ReduceMeanImpl_kernels.hpp index 864b89c4fa4667b70e43ed7436382e30bc150745..a156232230bd6e9be496eec2b76ccf8fcab4d9e9 100644 --- a/include/aidge/backend/cpu/operator/ReduceMeanImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ReduceMeanImpl_kernels.hpp @@ -25,6 +25,9 @@ #include "aidge/utils/Registrar.hpp" namespace Aidge { + +template <typename T> +using Acc_T = typename std::conditional<std::is_floating_point<T>::value, T, double>::type; template <typename T> typename std::enable_if<std::is_floating_point<T>::value, T>::type @@ -38,7 +41,7 @@ stableMean(const T* vec, size_t len, size_t stride) { // Specialization for integers: perform the mean computation in float template <typename T> -typename std::enable_if<!std::is_floating_point<T>::value, T>::type +typename std::enable_if<!std::is_floating_point<T>::value, double>::type stableMean(const T* vec, size_t len, size_t stride) { double mean = 0; for (size_t i = 0; i < len; ++i) { @@ -102,13 +105,13 @@ void ReduceMeanImpl_cpu_forward_kernel(const std::vector<std::int32_t>& axes, } // Type should be the return type of stableMean<I>(), which is always floating point - const decltype(stableMean<I>(input, 0, 0))* inputAccumulation = nullptr; - decltype(stableMean<I>(input, 0, 0))* outputAccumulation = nullptr; + const Acc_T<I>* inputAccumulation = nullptr; + Acc_T<I>* outputAccumulation = nullptr; for (const auto& axisInt : axes) { const std::size_t a = static_cast<std::size_t>(axisInt); outputElements /= inputDims[a]; - outputAccumulation = new I[outputElements]; + outputAccumulation = new Acc_T<I>[outputElements]; const std::size_t dim_i = inputDims[a]; for (std::size_t pre = 0; pre < stride_pre[a]; ++pre) { for (std::size_t post = 0; post < stride_post[a]; ++post) { @@ -118,7 +121,7 @@ void ReduceMeanImpl_cpu_forward_kernel(const std::vector<std::int32_t>& axes, outputAccumulation[idx_o] = stableMean<I>(input + idx_i, dim_i, stride_post[a]); } else { - outputAccumulation[idx_o] = stableMean<I>(inputAccumulation + idx_i, dim_i, stride_post[a]); + outputAccumulation[idx_o] = stableMean<Acc_T<I>>(inputAccumulation + idx_i, dim_i, stride_post[a]); } } } diff --git a/unit_tests/operator/Test_AvgPoolingImpl.cpp b/unit_tests/operator/Test_AvgPoolingImpl.cpp index f116934cd61375d3498ecf4e9aeb54f1eea37d3f..d0299ab56eac7ae19cfef6cf8c4bf9757bca4ab1 100644 --- a/unit_tests/operator/Test_AvgPoolingImpl.cpp +++ b/unit_tests/operator/Test_AvgPoolingImpl.cpp @@ -201,4 +201,25 @@ TEST_CASE("[cpu/operator] AvgPooling(forward)", "[AvgPooling][CPU]") { op2->getOutput(0)->print(); REQUIRE(*(op2->getOutput(0)) == *myOutput5); } + + SECTION("Simple test") { + std::shared_ptr<Tensor> tensor = + std::make_shared<Tensor>(Array4D<int32_t, 1, 1, 7, 7>{{{{ + {0, 8, 26, 35, 49, 45, 22}, + {2, 24, 48, 66, 60, 46, 26}, + {8, 41, 64, 68, 39, 18, 9}, + {10, 48, 72, 76, 42, 14, 9}, + {6, 29, 52, 65, 27, 7, 3}, + {1, 9, 24, 31, 18, 7, 1}, + {0, 0, 4, 6, 7, 1, 1}}}}}); + + auto op = AvgPooling2D_Op({7, 7}); + op.setDataType(DataType::Int32); + op.setBackend("cpu"); + + op.associateInput(0, tensor); + op.forwardDims(); + op.forward(); + REQUIRE(op.getOutput(0)->get<int32_t>(0) == 26); + } } \ No newline at end of file diff --git a/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp b/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp index 8e8536accadcb874f74d4d962aae435bc1351d6e..0fd7d84b1801e0918da3f4333ea86a07fb5cc790 100644 --- a/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp +++ b/unit_tests/operator/Test_GlobalAveragePoolingImpl.cpp @@ -558,6 +558,27 @@ TEST_CASE("[cpu/operator] GlobalAveragePooling", Log::info("Number of operations : {}\n", number_of_operation); Log::info("Operation / µs = {}\n", number_of_operation / duration.count()); } + + SECTION("Simple test") { + std::shared_ptr<Tensor> tensor = + std::make_shared<Tensor>(Array4D<int32_t, 1, 1, 7, 7>{{{{ + {0, 8, 26, 35, 49, 45, 22}, + {2, 24, 48, 66, 60, 46, 26}, + {8, 41, 64, 68, 39, 18, 9}, + {10, 48, 72, 76, 42, 14, 9}, + {6, 29, 52, 65, 27, 7, 3}, + {1, 9, 24, 31, 18, 7, 1}, + {0, 0, 4, 6, 7, 1, 1}}}}}); + + auto op = GlobalAveragePooling_Op(); + op.setDataType(DataType::Int32); + op.setBackend("cpu"); + + op.associateInput(0, tensor); + op.forwardDims(); + op.forward(); + REQUIRE(op.getOutput(0)->get<int32_t>(0) == 26); + } } } } // namespace Aidge