/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #ifndef AIDGE_CORE_OPERATOR_AVGPOOLING_H_ #define AIDGE_CORE_OPERATOR_AVGPOOLING_H_ #include <array> #include <numeric> #include <vector> #include <cmath> #include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/Operator.hpp" #include "aidge/operator/Producer.hpp" #include "aidge/utils/Parameter.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" namespace Aidge { enum class AvgPoolingParam { StrideDims, KernelDims, PaddingDims }; template <DimIdx_t DIM> class AvgPooling_Op : public Operator, public Registrable<AvgPooling_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const AvgPooling_Op<DIM> &)>, public Parameterizable<AvgPoolingParam, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, std::array<DimSize_t, (DIM<<1) >> { private: // FIXME: change accessibility std::shared_ptr<Tensor> mInput = std::make_shared<Tensor>(); const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); public: static constexpr const char *Type = "AvgPooling"; AvgPooling_Op() = delete; using Parameterizable_ = Parameterizable<AvgPoolingParam, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, std::array<DimSize_t, (DIM<<1)> >; template <AvgPoolingParam e> using param = typename Parameterizable_::template param<e>; constexpr AvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0)) : Operator(Type), Parameterizable_(param<AvgPoolingParam::StrideDims>(stride_dims), param<AvgPoolingParam::KernelDims>(kernel_dims), param<AvgPoolingParam::PaddingDims>(padding_dims)), mOutput(std::make_shared<Tensor>()) { setDatatype(DataType::Float32); } constexpr void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { assert(inputIdx < 1 && "operators supports only 3 inputs"); (void) inputIdx; // avoid unused warning assert(strcmp(data->type(), Tensor::Type) == 0 && "input data must be of Tensor type"); mInput = std::dynamic_pointer_cast<Tensor>(data); } constexpr void computeOutputDims() override final { if (!mInput->empty()) { std::array<DimSize_t, DIM + 2> outputDims = {}; for (std::size_t dim = 0; dim < this->template get<AvgPoolingParam::KernelDims>().size() ; ++dim) { outputDims[dim+2] = 1 + static_cast<DimSize_t>( std::floor(static_cast<float>(mInput->dims()[dim+2] - this->template get<AvgPoolingParam::KernelDims>()[dim] + this->template get<AvgPoolingParam::PaddingDims>()[dim] + this->template get<AvgPoolingParam::PaddingDims>()[dim+DIM]) / static_cast<float>(this->template get<AvgPoolingParam::StrideDims>()[dim]))); } outputDims[1] = mInput->dims()[1]; outputDims[0] = mInput->dims()[0]; mOutput->resize(outputDims); } } bool outputDimsForwarded() const override final { return !(mOutput->empty()); } inline Tensor& input(const IOIndex_t inputIdx) const override final { assert(inputIdx == 0 && "operators supports only 1 inputs"); (void) inputIdx; // avoid unused warning return *(mInput.get()); } inline Tensor& output(const IOIndex_t /*outputIdx*/) const override final { return *(mOutput.get()); } inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { assert(inputIdx == 0 && "AvgPooling Operators supports only 1 inputs"); (void) inputIdx; // avoid unused warning return mInput; } inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final { assert(outputIdx == 0 && "AvgPooling Operators has only 1 outputs"); (void) outputIdx; // avoid unused warning return mOutput; } std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { assert(inputIdx == 0 && "operators supports only 1 inputs"); (void) inputIdx; // avoid unused warning return std::static_pointer_cast<Data>(mInput); } std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final { assert(outputIdx == 0 && "operator supports only 1 output"); (void) outputIdx; // avoid unused warning return std::static_pointer_cast<Data>(mOutput); } void setBackend(const std::string &name) { mImpl = Registrar<AvgPooling_Op<DIM>>::create(name)(*this); mOutput->setBackend(name); // FIXME: temporary workaround mInput->setBackend(name); } void setDatatype(const DataType &datatype) { mOutput->setDatatype(datatype); // FIXME: temporary workaround mInput->setDatatype(datatype); } inline IOIndex_t nbInputs() const noexcept override final { return 1; } inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } inline IOIndex_t nbOutputs() const noexcept override final { return 1; } }; template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> AvgPooling(const std::array<DimSize_t, DIM> &kernel_dims, const char *name = nullptr, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0)) { // FIXME: properly handle default w&b initialization in every cases static_assert(DIM<=MaxDim,"Too many kernel dimensions required by AvgPooling, not supported"); auto avgPool = std::make_shared<Node>(std::make_shared<AvgPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, padding_dims), name); return avgPool; } template <DimSize_t DIM> inline std::shared_ptr<Node> AvgPooling( DimSize_t const (&kernel_dims)[DIM], const char *name = nullptr, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0)) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by AvgPooling, not supported"); return AvgPooling(to_array(kernel_dims), name, stride_dims, padding_dims); } } // namespace Aidge namespace { template <> const char *const EnumStrings<Aidge::AvgPoolingParam>::data[] = {"StrideDims", "KernelDims", "PaddingDims"}; } #endif /* AIDGE_CORE_OPERATOR_AVGPOOLING_H_ */