/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #ifndef AIDGE_CORE_OPERATOR_MAXPOOLING_H_ #define AIDGE_CORE_OPERATOR_MAXPOOLING_H_ #include <array> #include <numeric> #include <vector> #include <cmath> #include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/Operator.hpp" #include "aidge/operator/Producer.hpp" #include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" namespace Aidge { enum class MaxPoolingAttr { StrideDims, KernelDims, CeilMode }; template <DimIdx_t DIM> class MaxPooling_Op : public Operator, public Registrable<MaxPooling_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const MaxPooling_Op<DIM> &)>, public StaticAttributes<MaxPoolingAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, bool> { private: // FIXME: change accessibility std::shared_ptr<Tensor> mInput = std::make_shared<Tensor>(); const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); public: static constexpr const char *Type = "MaxPooling"; MaxPooling_Op() = delete; using Attributes_ = StaticAttributes<MaxPoolingAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, bool>; template <MaxPoolingAttr e> using attr = typename Attributes_::template attr<e>; constexpr MaxPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), bool ceil_mode = false) : Operator(Type), Attributes_(attr<MaxPoolingAttr::StrideDims>(stride_dims), attr<MaxPoolingAttr::KernelDims>(kernel_dims), attr<MaxPoolingAttr::CeilMode>(ceil_mode)), mOutput(std::make_shared<Tensor>()) { setDatatype(DataType::Float32); } /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ MaxPooling_Op(const MaxPooling_Op<DIM>& op) : Operator(Type), Attributes_(op), mOutput(std::make_shared<Tensor>(*op.mOutput)) { // cpy-ctor setDatatype(op.mOutput->dataType()); mImpl = op.mImpl ? Registrar<MaxPooling_Op<DIM>>::create(mOutput->getImpl()->backend())(*this) : nullptr; } /** * @brief Clone the operator using its copy-constructor. * @see Operator::MaxPooling_Op */ std::shared_ptr<Operator> clone() const override { return std::make_shared<MaxPooling_Op<DIM>>(*this); } void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { assert(inputIdx < 1 && "operators supports only 3 inputs"); (void) inputIdx; // avoid unused warning assert(strcmp(data->type(), Tensor::Type) == 0 && "input data must be of Tensor type"); mInput = std::dynamic_pointer_cast<Tensor>(data); } void computeOutputDims() override final { if (!mInput->empty()) { std::array<DimSize_t, DIM + 2> outputDims = {}; std::function<float(float)> roundingFunction; if (this->template getAttr<MaxPoolingAttr::CeilMode>()) { roundingFunction = [](float x) { return std::ceil(x); }; } else { roundingFunction = [](float x) { return std::floor(x); }; } for (std::size_t dim = 0; dim < this->template getAttr<MaxPoolingAttr::KernelDims>().size() ; ++dim) { outputDims[dim+2] = 1 + static_cast<DimSize_t>( roundingFunction(static_cast<float>(mInput->dims()[dim+2] - this->template getAttr<MaxPoolingAttr::KernelDims>()[dim]) / static_cast<float>(this->template getAttr<MaxPoolingAttr::StrideDims>()[dim]))); } outputDims[1] = mInput->dims()[1]; outputDims[0] = mInput->dims()[0]; mOutput->resize(outputDims); } } bool outputDimsForwarded() const override final { return !(mOutput->empty()); } inline Tensor& input(const IOIndex_t inputIdx) const override final { assert(inputIdx == 0 && "operators supports only 1 inputs"); (void) inputIdx; // avoid unused warning return *(mInput.get()); } inline Tensor& output(const IOIndex_t /*outputIdx*/) const override final { return *(mOutput.get()); } inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { assert(inputIdx == 0 && "MaxPooling Operators supports only 1 inputs"); (void) inputIdx; // avoid unused warning return mInput; } inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final { assert(outputIdx == 0 && "MaxPooling Operators has only 1 outputs"); (void) outputIdx; // avoid unused warning return mOutput; } std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { assert(inputIdx == 0 && "operators supports only 1 inputs"); (void) inputIdx; // avoid unused warning return std::static_pointer_cast<Data>(mInput); } std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final { assert(outputIdx == 0 && "operator supports only 1 output"); (void) outputIdx; // avoid unused warning return std::static_pointer_cast<Data>(mOutput); } void setBackend(const std::string &name) override { mImpl = Registrar<MaxPooling_Op<DIM>>::create(name)(*this); mOutput->setBackend(name); // FIXME: temporary workaround mInput->setBackend(name); } void setDatatype(const DataType &datatype) override { mOutput->setDatatype(datatype); // FIXME: temporary workaround mInput->setDatatype(datatype); } inline IOIndex_t nbInputs() const noexcept override final { return 1; } inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } inline IOIndex_t nbOutputs() const noexcept override final { return 1; } static const std::vector<std::string> getInputsName(){ return {"data_input"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; } }; template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> MaxPooling(const std::array<DimSize_t, DIM> &kernel_dims, const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), bool ceil_mode=false) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by MaxPooling, not supported"); return std::make_shared<Node>(std::make_shared<MaxPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, ceil_mode), name); } // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction template <DimSize_t DIM> inline std::shared_ptr<Node> MaxPooling( DimSize_t const (&kernel_dims)[DIM], const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), bool ceil_mode = false) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by MaxPooling, not supported"); return MaxPooling(to_array(kernel_dims), name, stride_dims, ceil_mode); } } // namespace Aidge namespace { template <> const char *const EnumStrings<Aidge::MaxPoolingAttr>::data[] = {"StrideDims", "KernelDims", "CeilMode"}; } #endif /* AIDGE_CORE_OPERATOR_MAXPOOLING_H_ */