/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #ifndef AIDGE_CORE_OPERATOR_MATMUL_H_ #define AIDGE_CORE_OPERATOR_MATMUL_H_ #include <array> #include <cmath> #include <numeric> #include <memory> #include <vector> #include "aidge/utils/Types.h" #include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/operator/Producer.hpp" #include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Registrar.hpp" namespace Aidge { enum class MatMulAttr { OutChannels }; class MatMul_Op : public OperatorTensor, public Registrable<MatMul_Op, std::string, std::unique_ptr<OperatorImpl>(const MatMul_Op &)>, public StaticAttributes<MatMulAttr, DimSize_t> { public: static constexpr const char* Type = "MatMul"; MatMul_Op() = delete; using Attributes_ = StaticAttributes<MatMulAttr, DimSize_t>; template <MatMulAttr e> using attr = typename Attributes_::template attr<e>; MatMul_Op(DimSize_t out_channels) : OperatorTensor(Type, 1, 1, 1), Attributes_( attr<MatMulAttr::OutChannels>(out_channels)) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ MatMul_Op(const MatMul_Op& op) : OperatorTensor(op), Attributes_(op) { mImpl = op.mImpl ? Registrar<MatMul_Op>::create(mOutputs[0]->getImpl()->backend())(*this) : nullptr; } /** * @brief Clone the operator using its copy-constructor. * @see Operator::MatMul_Op */ std::shared_ptr<Operator> clone() const override { return std::make_shared<MatMul_Op>(*this); } void computeOutputDims() override final { bool associated = true; for (IOIndex_t i = 0; i < nbInputs(); ++i) { if (!getInput(i)) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Every input should be associated with a Tensor"); } associated &= !(getInput(i)->empty()); } if (associated) { // <batch, OutChannels> mOutputs[0]->resize({getInput(0)->dims()[0], this->template getAttr<MatMulAttr::OutChannels>()}); } } void setBackend(const std::string& name, int device = 0) override { mImpl = Registrar<MatMul_Op>::create(name)(*this); mOutputs[0]->setBackend(name, device); // FIXME: temporary workaround getInput(0)->setBackend(name, device); getInput(1)->setBackend(name, device); } static const std::vector<std::string> getInputsName(){ return {"data_input", "weight"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; } }; inline std::shared_ptr<Node> MatMul(DimSize_t inChannels, DimSize_t outChannels, const std::string& name = "") { // FIXME: properly handle default w initialization in every cases auto matmul = std::make_shared<Node>(std::make_shared<MatMul_Op>(outChannels), name); addProducer(matmul, 1, std::array<DimSize_t, 2>({outChannels, inChannels}), "w"); return matmul; } } // namespace Aidge namespace { template <> const char *const EnumStrings<Aidge::MatMulAttr>::data[] = {"OutChannels"}; } #endif /* AIDGE_CORE_OPERATOR__MATMUL_H_ */