/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #ifndef AIDGE_CORE_OPERATOR_FC_H_ #define AIDGE_CORE_OPERATOR_FC_H_ #include <array> #include <cmath> #include <numeric> #include <memory> #include <vector> #include "aidge/utils/Types.h" #include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/Operator.hpp" #include "aidge/operator/Producer.hpp" #include "aidge/utils/Parameter.hpp" #include "aidge/utils/Registrar.hpp" namespace Aidge { enum class FCParam { OutChannels, NoBias }; class FC_Op : public Operator, public Registrable<FC_Op, std::string, std::unique_ptr<OperatorImpl>(const FC_Op &)>, public Parameterizable<FCParam, DimSize_t, bool> { public: // FIXME: change accessibility std::array<std::shared_ptr<Tensor>, 3> mInputs = {std::make_shared<Tensor>(), std::make_shared<Tensor>(), std::make_shared<Tensor>()}; const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); public: static constexpr const char* Type = "FC"; FC_Op() = delete; Operator* clone() const override { return new FC_Op(*static_cast<const FC_Op*>(this)); } using Parameterizable_ = Parameterizable<FCParam, DimSize_t, bool>; template <FCParam e> using param = typename Parameterizable_::template param<e>; FC_Op(DimSize_t out_channels, bool noBias) : Operator(Type), Parameterizable_( param<FCParam::OutChannels>(out_channels), param<FCParam::NoBias>(noBias)), mOutput(std::make_shared<Tensor>()) { setDatatype(DataType::Float32); } void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { assert(inputIdx < 3 && "operators supports only 3 inputs"); assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type"); if (inputIdx == 2) { assert(std::dynamic_pointer_cast<Tensor>(data)->size() == ((this->template get<FCParam::NoBias>()) == false ? static_cast<std::size_t>(this->template get<FCParam::OutChannels>()) : 0)); assert(std::dynamic_pointer_cast<Tensor>(data)->nbDims() == 1); } mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); if (inputIdx == 0 && mInputs[0]->nbDims() == 1) mInputs[inputIdx]->resize(std::array<DimSize_t, 2>({1, mInputs[inputIdx]->size()})); } void computeOutputDims() override final { if (!mInputs[0]->empty()) { // <in_features**, out_channels> std::array<DimSize_t, 2> weightDims = {this->template get<FCParam::OutChannels>(), static_cast<DimSize_t>(mInputs[0]->sizeM1())}; // <out_channels, batch> std::array<DimSize_t, 2> outputDims = {mInputs[0]->dims()[0], this->template get<FCParam::OutChannels>()}; mInputs[1]->resize(weightDims); mOutput->resize(outputDims); } } bool outputDimsForwarded() const override final { return !(mOutput->empty()); } inline Tensor& input(const IOIndex_t inputIdx) const override final { assert(inputIdx < 3 && "operators supports only 3 inputs"); return *(mInputs[inputIdx].get()); } inline Tensor& output(const IOIndex_t /*inputIdx*/) const override final { return *(mOutput.get()); } inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { assert(inputIdx < 3 && "FC Operators supports only 3 inputs"); return mInputs[inputIdx]; } inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final { assert((outputIdx == 0) && "FC Operator has only 1 output"); (void) outputIdx; // avoid unused warning return mOutput; } std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { assert(inputIdx < 3 && "operators supports only 3 inputs"); return std::static_pointer_cast<Data>(mInputs[inputIdx]); } std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final { assert(outputIdx == 0 && "operator supports only 1 output"); (void) outputIdx; // avoid unused warning return std::static_pointer_cast<Data>(mOutput); } void setBackend(const std::string& name) { mImpl = Registrar<FC_Op>::create(name)(*this); mOutput->setBackend(name); // FIXME: temporary workaround mInputs[0]->setBackend(name); mInputs[1]->setBackend(name); mInputs[2]->setBackend(name); } void setDatatype(const DataType& datatype) { mOutput->setDatatype(datatype); // FIXME: temporary workaround mInputs[0]->setDatatype(datatype); mInputs[1]->setDatatype(datatype); mInputs[2]->setDatatype(datatype); } inline IOIndex_t nbInputs() const noexcept override final { return 3; } inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } inline IOIndex_t nbOutputs() const noexcept override final { return 1; } }; inline std::shared_ptr<Node> FC(DimSize_t out_channels, bool noBias = false, const std::string& name = "") { // FIXME: properly handle default w&b initialization in every cases auto fc = std::make_shared<Node>(std::make_shared<FC_Op>(out_channels, noBias), name); addProducer(fc, 1, {out_channels, 1}, "w"); addProducer(fc, 2, {(noBias ? 0 : out_channels)}, "b"); // already sets bias dims return fc; } } // namespace Aidge namespace { template <> const char *const EnumStrings<Aidge::FCParam>::data[] = {"OutChannels", "NoBias"}; } #endif /* AIDGE_CORE_OPERATOR_FC_H_ */