/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #ifndef AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_ #define AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_ #include <array> #include <cmath> // std::floor #include <cstddef> // std::size_t #include <string> #include <utility> // std::pair #include <vector> #include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/operator/Producer.hpp" #include "aidge/utils/ArrayHelpers.hpp" #include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" namespace Aidge { enum class ConvDepthWiseAttr { StrideDims, DilationDims, Channels, KernelDims }; template <DimIdx_t DIM> class ConvDepthWise_Op : public OperatorTensor, public Registrable<ConvDepthWise_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const ConvDepthWise_Op<DIM> &)>, public StaticAttributes<ConvDepthWiseAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t, std::array<DimSize_t, DIM>> { public: static const std::string Type; ConvDepthWise_Op() = delete; using Attributes_ = StaticAttributes<ConvDepthWiseAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t, std::array<DimSize_t, DIM>>; template <ConvDepthWiseAttr e> using attr = typename Attributes_::template attr<e>; constexpr ConvDepthWise_Op(const DimSize_t nbChannels, const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) : OperatorTensor(Type, 1, 2, 1), Attributes_(attr<ConvDepthWiseAttr::StrideDims>(stride_dims), attr<ConvDepthWiseAttr::DilationDims>(dilation_dims), attr<ConvDepthWiseAttr::Channels>(nbChannels), attr<ConvDepthWiseAttr::KernelDims>(kernel_dims)) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ ConvDepthWise_Op(const ConvDepthWise_Op<DIM>& op) : OperatorTensor(op), Attributes_(op) { if (op.mImpl){ SET_IMPL_MACRO(ConvDepthWise_Op<DIM>, *this, op.backend()); }else{ mImpl = nullptr; } } /** * @brief Clone the operator using its copy-constructor. * @see Operator::ConvDepthWise_Op */ std::shared_ptr<Operator> clone() const override { return std::make_shared<ConvDepthWise_Op<DIM>>(*this); } void computeOutputDims() override final { // check inputs have been associated // TODO : add a check of inputs dimensions ? bool associated = true; for (IOIndex_t i = 0; i < 3; ++i) { if (!getInput(i)) { AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i); } associated &= !(getInput(i)->empty()); } if (associated) { std::array<DimSize_t, DIM + 2> outputDims = {}; const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>()); for (std::size_t dim = 0; dim < this->template getAttr<ConvDepthWiseAttr::KernelDims>().size() ; ++dim) { const DimSize_t kernelExtent = this->template getAttr<ConvDepthWiseAttr::DilationDims>()[dim] * (this->template getAttr<ConvDepthWiseAttr::KernelDims>()[dim] - 1) + 1; outputDims[dim+2] = 1 + static_cast<DimSize_t>( floor(static_cast<float>(inputDims[dim+2] - kernelExtent) / static_cast<float>(this->template getAttr<ConvDepthWiseAttr::StrideDims>()[dim]))); } // std::array<DimSize_t, DIM+2> weightDims = append(mInputs[0]->dims()[1],append(1, this->template getAttr<ConvDepthWiseAttr::KernelDims>())); // if (mInputs[1]->empty()) { // mInputs[1]->resize(weightDims); // } // if (mInputs[2]->empty()) { // mInputs[2]->resize({mInputs[0]->dims()[1]}); // } outputDims[1] = inputDims[1]; outputDims[0] = inputDims[0]; mOutputs[0]->resize(outputDims); } } std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> computeReceptiveField(const std::vector<DimSize_t>& firstEltDims, const std::vector<DimSize_t>& outputDims, const IOIndex_t outputIdx = 0) const override { if (outputIdx != 0) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Conv_Op Operator has got only one output Tensor."); } if (firstEltDims.size() != outputDims.size()) { AIDGE_THROW_OR_ABORT(std::runtime_error, "outputDims and firstEltDims should have the size of the output Tensor dimensions."); } if ((outputDims.size() == (DIM+2)) && outputDimsForwarded()) { // Offset auto inputIdxDims = firstEltDims; // batch idx is the same for (DimIdx_t i = 0; i < (DIM+2); ++i) { if (((outputDims[i] + firstEltDims[i]) > mOutputs[0]->template dims<DIM+2>()[i]) || (outputDims[i] == 0)) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range for dimension {} ({} + {})", static_cast<std::size_t>(i), firstEltDims[i], outputDims[i]); } } // padding is not a parameter of Conv_Op. It is handled in Pad_Op Operator // Input // same batch value std::vector<DimSize_t> inputDims{outputDims[0], outputDims[1]}; for (DimIdx_t i = 0; i < DIM; ++i) { inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1) * this->template getAttr<ConvDepthWiseAttr::StrideDims>()[static_cast<std::size_t>(i)] + 1 + (this->template getAttr<ConvDepthWiseAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1) * this->template getAttr<ConvDepthWiseAttr::DilationDims>()[static_cast<std::size_t>(i)]); inputIdxDims[2+i] *= this->template getAttr<ConvDepthWiseAttr::StrideDims>()[static_cast<std::size_t>(i)]; } // Weight std::vector<DimSize_t> weightDims{outputDims[1], 1}; for (std::size_t i = 0; i < DIM; ++i) { weightDims.push_back(this->template getAttr<ConvDepthWiseAttr::KernelDims>()[i]); } std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0); weightIdxDims[0] = firstEltDims[1]; // Bias const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]}; // Result std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res; res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims)); res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims)); res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims)); return res; } AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet."); } void setBackend(const std::string &name, DeviceIdx_t device = 0) override { SET_IMPL_MACRO(ConvDepthWise_Op<DIM>, *this, name); mOutputs[0]->setBackend(name, device); // By default, automatically set backend for weight and bias inputs getInput(1)->setBackend(name, device); getInput(2)->setBackend(name, device); } static const std::vector<std::string> getInputsName(){ return {"data_input", "weight", "bias"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; } }; template <DimIdx_t DIM> const std::string ConvDepthWise_Op<DIM>::Type = "ConvDepthWise"; template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> ConvDepthWise(const DimSize_t nbChannels, const std::array<DimSize_t, DIM> &kernelDims, const std::string& name = "", const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) { // FIXME: properly handle default w&b initialization in every cases static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported"); auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nbChannels, kernelDims, strideDims, dilationDims), name); addProducer(convDW, 1, append(nbChannels, append(DimSize_t(1), kernelDims)), "w"); addProducer(convDW, 2, {nbChannels}, "b"); return convDW; } // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction template <DimSize_t DIM> inline std::shared_ptr<Node> ConvDepthWise( const DimSize_t nbChannels, DimSize_t const (&kernelDims)[DIM], const std::string& name = "", const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported"); return ConvDepthWise(nbChannels, to_array(kernelDims), name, strideDims, dilationDims); } } // namespace Aidge namespace { template <> const char *const EnumStrings<Aidge::ConvDepthWiseAttr>::data[] = {"StrideDims", "DilationDims", "Channels", "KernelDims"}; } #endif /* AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_ */