/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #ifndef AIDGE_CORE_OPERATOR_CONV_H_ #define AIDGE_CORE_OPERATOR_CONV_H_ #include <array> #include <cmath> #include <cstddef> #include <numeric> #include <vector> #include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/operator/Producer.hpp" #include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" namespace Aidge { enum class ConvAttr { StrideDims, DilationDims, InChannels, OutChannels, KernelDims }; template <DimIdx_t DIM> class Conv_Op : public OperatorTensor, public Registrable<Conv_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const Conv_Op<DIM> &)>, public StaticAttributes<ConvAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t, DimSize_t, std::array<DimSize_t, DIM>> { public: static const std::string Type; Conv_Op() = delete; using Attributes_ = StaticAttributes<ConvAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t, DimSize_t, std::array<DimSize_t, DIM>>; template <ConvAttr e> using attr = typename Attributes_::template attr<e>; constexpr Conv_Op(DimSize_t inChannels, DimSize_t outChannels, const std::array<DimSize_t, DIM> &kernelDims, const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) : OperatorTensor(Type, 1, 2, 1), Attributes_(attr<ConvAttr::StrideDims>(strideDims), attr<ConvAttr::DilationDims>(dilationDims), attr<ConvAttr::InChannels>(inChannels), attr<ConvAttr::OutChannels>(outChannels), attr<ConvAttr::KernelDims>(kernelDims)) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ Conv_Op(const Conv_Op<DIM>& op) : OperatorTensor(op), Attributes_(op) { mImpl = op.mImpl ? Registrar<Conv_Op<DIM>>::create(op.mOutputs[0]->getImpl()->backend())(*this) : nullptr; } /** * @brief Clone the operator using its copy-constructor. * @see Operator::Conv_Op */ std::shared_ptr<Operator> clone() const override { return std::make_shared<Conv_Op<DIM>>(*this); } // Data operator[](const char* inputName) override final { // std::shared_ptr<Tensor> in = (strcmp(inputName, "data")) ? getInput(0) : // (strcmp(inputName, "weight") ? getInput(1) : // (strcmp(inputName, "bias") ? getInput(2) : // nullptr)); // assert((in!=nullptr) && "No such parameter"); // return *in; // } // std::shared_ptr<Conv_Op> clone() const override final { // } void computeOutputDims() override final { // check inputs have been associated bool associated = true; for (IOIndex_t i = 0; i < 3; ++i) { if (!getInput(i)) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Every input should be associated with a Tensor"); } associated &= !(getInput(i)->empty()); } if (associated) { std::array<DimSize_t, DIM + 2> outputDims{}; const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>()); for (std::size_t dim = 0; dim < this->template getAttr<ConvAttr::KernelDims>().size() ; ++dim) { const DimSize_t kernelExtent = this->template getAttr<ConvAttr::DilationDims>()[dim] * (this->template getAttr<ConvAttr::KernelDims>()[dim] - 1) + 1; outputDims[dim+2] = 1 + static_cast<DimSize_t>( floor(static_cast<float>(inputDims[dim+2] - kernelExtent) / static_cast<float>(this->template getAttr<ConvAttr::StrideDims>()[dim]))); } outputDims[1] = this->template getAttr<ConvAttr::OutChannels>(); outputDims[0] = inputDims[0]; mOutputs[0]->resize(outputDims); } } std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> computeReceptiveField(const std::vector<DimSize_t>& firstEltDims, const std::vector<DimSize_t>& outputDims, const IOIndex_t outputIdx = 0) const override { if (outputIdx != 0) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Conv_Op Operator has got only one output Tensor."); } if (firstEltDims.size() != outputDims.size()) { AIDGE_THROW_OR_ABORT(std::runtime_error, "outputDims and firstEltDims should have the size of the output Tensor dimensions."); } if ((outputDims.size() == (DIM+2)) && outputDimsForwarded()) { // Offset auto inputIdxDims = firstEltDims; // batch idx is the same inputIdxDims[1] = 0; // each channel is used so start with the first one for (DimIdx_t i = 0; i < (DIM+2); ++i) { if (((outputDims[i] + firstEltDims[i]) > mOutputs[0]->template dims<DIM+2>()[i]) || (outputDims[i] == 0)) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range for dimension {} ({} + {})", static_cast<std::size_t>(i), firstEltDims[i], outputDims[i]); } } // padding is not a parameter of Conv_Op. It is handled in Pad_Op Operator // Input // same batch value, every input channel is used std::vector<DimSize_t> inputDims{outputDims[0], getInput(0)->dims()[1]}; for (DimIdx_t i = 0; i < DIM; ++i) { inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1) * this->template getAttr<ConvAttr::StrideDims>()[static_cast<std::size_t>(i)] + 1 + (this->template getAttr<ConvAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1) * this->template getAttr<ConvAttr::DilationDims>()[static_cast<std::size_t>(i)]); inputIdxDims[2+i] *= this->template getAttr<ConvAttr::StrideDims>()[static_cast<std::size_t>(i)]; } // Weight // same output value, every input channel is used std::vector<DimSize_t> weightDims{outputDims[1], getInput(0)->dims()[1]}; for (std::size_t i = 0; i < DIM; ++i) { weightDims.push_back(this->template getAttr<ConvAttr::KernelDims>()[i]); } std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0); weightIdxDims[0] = firstEltDims[1]; // Bias const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]}; // Result std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res; res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims)); res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims)); res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims)); return res; } AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet."); } void setBackend(const std::string &name, DeviceIdx_t device = 0) override { mImpl = Registrar<Conv_Op<DIM>>::create(name)(*this); mOutputs[0]->setBackend(name, device); // By default, automatically set backend for weight and bias inputs getInput(1)->setBackend(name, device); getInput(2)->setBackend(name, device); } static const std::vector<std::string> getInputsName(){ return {"data_input", "weight", "bias"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; } }; template <DimIdx_t DIM> const std::string Conv_Op<DIM>::Type = "Conv"; /** * @brief Perform a convolution on the input Tensor. * * @tparam DIM Number of dimensions for the feature map. * @param inChannels Number of input channels. * @param outChannels Number of output channels. * @param kernelDims Dimensions of the kernel. Must be the same number of dimensions as the feature map. * @param name Name of the operator. * @param strideDims Dimensions of the stride attribute. Must be the same number of dimensions as the feature map. * @param dilationDims Dimensions of the dilation attribute. Must be the same number of dimensions as the feature map. * @return std::shared_ptr<Node> A Node containing the operator. */ template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> Conv(DimSize_t inChannels, DimSize_t outChannels, const std::array<DimSize_t, DIM> &kernelDims, const std::string& name = "", const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) { // FIXME: properly handle default w&b initialization in every cases static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported"); auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(inChannels, outChannels, kernelDims, strideDims, dilationDims), name); addProducer(conv, 1, append(outChannels, append(inChannels, kernelDims)), "w"); addProducer(conv, 2, {outChannels}, "b"); return conv; } // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction template <DimSize_t DIM> inline std::shared_ptr<Node> Conv( DimSize_t inChannels, DimSize_t outChannels, DimSize_t const (&kernelDims)[DIM], const std::string& name = "", const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported"); return Conv(inChannels, outChannels, to_array(kernelDims), name, strideDims, dilationDims); } } // namespace Aidge namespace { template <> const char *const EnumStrings<Aidge::ConvAttr>::data[] = { "StrideDims", "DilationDims", "InChannels", "OutChannels", "KernelDims" }; } #endif /* AIDGE_CORE_OPERATOR_CONV_H_ */