/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #ifndef AIDGE_CORE_DATA_TENSOR_H_ #define AIDGE_CORE_DATA_TENSOR_H_ #include <cstring> #include <set> #include <memory> #include <numeric> // std::accumulate #include <string> #include <vector> #include "aidge/backend/TensorImpl.hpp" #include "aidge/data/Data.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" #include "aidge/utils/ArrayHelpers.hpp" namespace Aidge { /** * @brief Description for the tensor data structure. * @details Sets the properties of the tensor without actually containing any data. * Contains a pointer to an actual contiguous implementation of data. */ class Tensor : public Data, public Registrable<Tensor, std::tuple<std::string, DataType>, std::shared_ptr<TensorImpl>(DeviceIdx_t device, std::vector<DimSize_t> dims)> { private: DataType mDataType; /** enum to specify data type. */ std::vector<DimSize_t> mDims; /** Dimensions of the tensor. */ std::vector<DimSize_t> mStrides; /** Stride dimensions of the tensor. */ std::shared_ptr<TensorImpl> mImpl; /** Pointer to the actual data implementation. */ std::size_t mImplOffset = 0; std::shared_ptr<Tensor> mGrad; /** Pointer to the associated gradient Tensor instance. */ // Cached data std::size_t mSize = 0; /** Number of elements in the Tensor. */ bool mContiguous = true; public: static constexpr const char *Type = "Tensor"; /** * @brief Construct a new empty Tensor object. * @param dataType Sets the type of inserted data. */ Tensor(DataType dataType = DataType::Float32) : Data(Type), mDataType(dataType) { // ctor } /** * @brief Construct a new Tensor object from dimensions. * * @param dims dimensions of the tensor * @param dataType datatype of the tensor (default = DataType::Float32) */ Tensor(const std::vector<DimSize_t>& dims, DataType dataType = DataType::Float32) : Data(Type), mDataType(dataType), mDims(dims) { computeSize(); } /** * @brief Construct a new Tensor object from another one (shallow copy). * Data memory is not copied, but shared between the new Tensor and the * initial one. * * @param otherTensor */ Tensor(const Tensor&) = default; Tensor(Tensor&&) = default; /** * Perform a deep copy of the tensor. */ Tensor clone() const { Tensor newTensor(*this); if (!newTensor.isContiguous()) { newTensor.makeContiguous(); } else { std::shared_ptr<TensorImpl> newImpl = Registrar<Tensor>::create({mImpl->backend(), mDataType})(mImpl->device().second, mDims); newImpl->copy(mImpl->rawPtr(mImplOffset), mSize); newTensor.setImpl(newImpl); } return newTensor; } /** * @brief Construct a new Tensor object from the 1-dimension Array helper. * @tparam T datatype * @tparam SIZE_0 first array dimension. */ template <typename T, std::size_t SIZE_0> constexpr Tensor(Array1D<T, SIZE_0> &&arr) : Data(Type), mDataType(NativeType<T>::type), mDims({SIZE_0}), mStrides({1}), mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0})), mSize(SIZE_0) { mImpl->copyFromHost(&arr.data[0], SIZE_0); } template <typename T, std::size_t SIZE_0> constexpr Tensor &operator=(Array1D<T, SIZE_0> &&arr) { resize({SIZE_0}); if (!mImpl) { mImpl = Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0}); } mImpl->copyFromHost(&arr.data[0], SIZE_0, mImplOffset); return *this; } /** * @brief Construct a new Tensor object from the 2-dimensions Array helper. * @tparam T datatype * @tparam SIZE_0 first array dimension. * @tparam SIZE_1 second array dimension. */ template <typename T, std::size_t SIZE_0, std::size_t SIZE_1> constexpr Tensor(Array2D<T, SIZE_0, SIZE_1> &&arr) : Data(Type), mDataType(NativeType<T>::type), mDims({SIZE_0, SIZE_1}), mStrides({SIZE_1, 1}), mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0, SIZE_1})), mSize(SIZE_0 * SIZE_1) { mImpl->copyFromHost(&arr.data[0][0], SIZE_0 * SIZE_1); } template <typename T, std::size_t SIZE_0, std::size_t SIZE_1> constexpr Tensor &operator=(Array2D<T, SIZE_0, SIZE_1> &&arr) { resize({SIZE_0, SIZE_1}); if (!mImpl) { mImpl = Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0, SIZE_1}); } mImpl->copyFromHost(&arr.data[0][0], SIZE_0 * SIZE_1, mImplOffset); return *this; } /** * @brief Construct a new Tensor object from the 3-dimensions Array helper. * @tparam T datatype * @tparam SIZE_0 first array dimension. * @tparam SIZE_1 second array dimension. * @tparam SIZE_2 third array dimension. */ template <typename T, std::size_t SIZE_0, std::size_t SIZE_1, std::size_t SIZE_2> constexpr Tensor(Array3D<T, SIZE_0, SIZE_1, SIZE_2> &&arr) : Data(Type), mDataType(NativeType<T>::type), mDims({SIZE_0, SIZE_1, SIZE_2}), mStrides({SIZE_1 * SIZE_2, SIZE_2, 1}), mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0, SIZE_1, SIZE_2})), mSize(SIZE_0 * SIZE_1 * SIZE_2) { mImpl->copyFromHost(&arr.data[0][0][0], SIZE_0 * SIZE_1 * SIZE_2); } template <typename T, std::size_t SIZE_0, std::size_t SIZE_1, std::size_t SIZE_2> constexpr Tensor &operator=(Array3D<T, SIZE_0, SIZE_1, SIZE_2> &&arr) { resize({SIZE_0, SIZE_1, SIZE_2}); if (!mImpl) { mImpl = Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0, SIZE_1, SIZE_2}); } mImpl->copyFromHost(&arr.data[0][0][0], SIZE_0 * SIZE_1 * SIZE_2, mImplOffset); return *this; } /** * @brief Construct a new Tensor object from the 4-dimensions Array helper. * @tparam T datatype * @tparam SIZE_0 first array dimension. * @tparam SIZE_1 second array dimension. * @tparam SIZE_2 third array dimension. * @tparam SIZE_3 fourth array dimension. */ template <typename T, std::size_t SIZE_0, std::size_t SIZE_1, std::size_t SIZE_2, std::size_t SIZE_3> constexpr Tensor(Array4D<T, SIZE_0, SIZE_1, SIZE_2, SIZE_3> &&arr) : Data(Type), mDataType(NativeType<T>::type), mDims({SIZE_0, SIZE_1, SIZE_2, SIZE_3}), mStrides({SIZE_1 * SIZE_2 * SIZE_3, SIZE_2 * SIZE_3, SIZE_3, 1}), mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0, SIZE_1, SIZE_2, SIZE_3})), mSize(SIZE_0 * SIZE_1 * SIZE_2 * SIZE_3) { mImpl->copyFromHost(&arr.data[0][0][0][0], SIZE_0 * SIZE_1 * SIZE_2 * SIZE_3); } template <typename T, std::size_t SIZE_0, std::size_t SIZE_1, std::size_t SIZE_2, std::size_t SIZE_3> constexpr Tensor &operator=(Array4D<T, SIZE_0, SIZE_1, SIZE_2, SIZE_3> &&arr) { resize({SIZE_0, SIZE_1, SIZE_2, SIZE_3}); if (!mImpl) { mImpl = Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0, SIZE_1, SIZE_2, SIZE_3}); } mImpl->copyFromHost(&arr.data[0][0][0][0], SIZE_0 * SIZE_1 * SIZE_2 * SIZE_3, mImplOffset); return *this; } /** * @brief Copy dimensions, datatype and data from another Tensor. * If current Tensor already has an implementation, data is copied to the * existing implementation. Tensor backend/device remain untouched. * If current Tensor does not have an implementation, only a shallow copy * is performed and the Tensor will share data with t. * @param t other Tensor object. * @return Tensor& */ Tensor &operator=(const Tensor &t) { resize(t.dims(), t.strides()); setDataType(t.dataType(), false); // do not convert existing data if (t.hasImpl()) { if (hasImpl()) { copyFrom(t); } else { // Perform a shallow copy only setImpl(t.mImpl, t.mImplOffset); } } else { setImpl(nullptr); } return *this; } /** * @brief Assess data type, dimensions, backend and data are the same. * @param otherTensor */ bool operator==(const Tensor &otherTensor) const { if ((!mImpl && !otherTensor.mImpl) || (dataType() != otherTensor.dataType()) || (dims() != otherTensor.dims()) || (mImpl->backend() != otherTensor.mImpl->backend())) { return false; } return *mImpl == *(otherTensor.mImpl); } /** * @brief Set the backend of the Tensor associated implementation. If there * was no previous implementation set, data will be allocated, but it will * not be initialized to any particular value. * If data was already initialized in a previous backend, it will be moved * to the new one except if copyFrom is false. * @param name Backend name * @param device Backend device * @param copyFrom If true (default), move data from previous backend/device * to the new one. Previous data is lost otherwise. */ inline void setBackend(const std::string &name, DeviceIdx_t device = 0, bool copyFrom = true) { if (mImpl) { if (mImpl->device() != std::make_pair(name, device)) { // Backend change: create new impl, copy from old to new and replace // impl std::shared_ptr<TensorImpl> newImpl = Registrar<Tensor>::create({name, mDataType})(device, mDims); if (copyFrom) { newImpl->copyFrom(*mImpl, mImpl->size(), mImplOffset, 0); } setImpl(newImpl); } } else { mImpl = Registrar<Tensor>::create({name, mDataType})(device, mDims); } } /** * @brief Get a list of available backends. * @return std::set<std::string> */ static std::set<std::string> getAvailableBackends(){ std::set<std::string> backendsList; for(std::tuple<std::string, DataType> tupleKey : Registrar<Tensor>::getKeys()) backendsList.insert(std::get<0>(tupleKey)); return backendsList; } /** * @brief Get the data type enum. * @return constexpr DataType */ constexpr DataType dataType() const { return mDataType; } /** * @brief Set the DataType of the Tensor and converts data * if the Tensor has already been initialized and copyCast is true. * @param dt DataType * @param copyCast If true (default), previous data is copy-casted. Otherwise * previous data is lost. */ void setDataType(const DataType dt, bool copyCast = true) { if (mImpl && (dataType() != dt)) { std::shared_ptr<TensorImpl> newImpl = Registrar<Tensor>::create({mImpl->backend(), dt})(mImpl->device().second, mDims); if (copyCast) { newImpl->copyCast(mImpl->rawPtr(mImplOffset), mDataType, mImpl->size()); } setImpl(newImpl); } mDataType = dt; } /** * @brief Get the Impl object * @return constexpr const std::shared_ptr<TensorImpl>& */ constexpr const std::shared_ptr<TensorImpl> &getImpl() const { return mImpl; } constexpr std::size_t getImplOffset() const { return mImplOffset; } /** * @brief Set the Impl object * * @param impl New impl shared pointer * @param implOffset Storage offset in this new impl for this Tensor */ void setImpl(std::shared_ptr<TensorImpl> impl, std::size_t implOffset = 0) { mImpl = impl; mImplOffset = implOffset; } /** * @brief Return if an implementaiton has been associated. * @return true * @return false */ bool hasImpl() const { return (mImpl) ? true : false; } /** * @brief Get number of dimensions of the Tensor. * @return std::size_t */ inline std::size_t nbDims() const { return mDims.size(); } /** * @brief Get dimensions of the Tensor object. * @tparam DIM number of dimensions. * @return constexpr std::array<DimSize_t, DIM> */ template <DimIdx_t DIM> constexpr std::array<DimSize_t, DIM> dims() const { assert(DIM == mDims.size() && "wrong number of dimensions"); return to_array<DIM>(mDims.cbegin()); } /** * @brief Get dimensions of the Tensor object. * @return constexpr const std::vector<DimSize_t>& */ constexpr const std::vector<DimSize_t> &dims() const { return mDims; } /** * @brief Get strides of the Tensor object. * @return constexpr const std::vector<DimSize_t>& */ constexpr const std::vector<DimSize_t> &strides() const { return mStrides; } /** * @brief Return true if Tensor is contiguous in memory. * @return bool */ constexpr bool isContiguous() const { return mContiguous; } /** * @brief Get the number of elements in the Tensor object. * @return constexpr std::size_t */ constexpr std::size_t size() const { return mSize; } /** * @brief Change the dimensions of the Tensor object according to the given argument. * If the overall size is not changed (meaning we actually only performed a * reshape), data is garanteed to remain valid. * Otherwise, no garantee is provided regarding the validy of previous data * (unlike std::vector). If the new overall size is larger than the previous * one, all previous data is invalided. Otherwise, previous data may or may * not remain valid, depending on the backend implementation. * @tparam DIM Number of dimensions. * @param dims New dimensions */ template <std::array<DimSize_t, 1>::size_type DIM> // deducing std::array size_type and declaring DIM accordingly inline void resize(const std::array<DimSize_t, DIM> &dims) { resize(std::vector<DimSize_t>(dims.begin(), dims.end())); } /** * @brief Change the dimensions of the Tensor object according to the given argument. * If the overall size is not changed (meaning we actually only performed a * reshape), data is garanteed to remain valid. * Otherwise, no garantee is provided regarding the validy of previous data * (unlike std::vector). If the new overall size is larger than the previous * one, all previous data is invalided. Otherwise, previous data may or may * not remain valid, depending on the backend implementation. * @param dims New dimensions * @param strides Stride of the tensor (if not specified, "nested" stride is used) */ void resize(const std::vector<DimSize_t> &dims, std::vector<DimSize_t> strides = std::vector<DimSize_t>()); /** * @brief Return if the Tensor object has at leastone element. * @return true * @return false */ bool empty() const { return mDims.empty(); } template <typename expectedType> const expectedType& get(std::size_t idx) const { AIDGE_ASSERT(NativeType<expectedType>::type == mDataType, "wrong data type"); AIDGE_ASSERT(idx < mSize, "idx out of range"); return *reinterpret_cast<expectedType *>(mImpl->hostPtr(mImplOffset + idx)); } template <typename expectedType> const expectedType& get(std::vector<std::size_t> coordIdx) const { return get<expectedType>(getStorageIdx(coordIdx)); } template <typename expectedType> void set(std::size_t idx, expectedType value){ AIDGE_ASSERT(NativeType<expectedType>::type == mDataType, "wrong data type"); AIDGE_ASSERT(idx < mSize, "idx out of range"); expectedType* dataPtr = static_cast<expectedType*>(mImpl->hostPtr(mImplOffset + idx)); *dataPtr = value; } template <typename expectedType> void set(std::vector<std::size_t> coordIdx, expectedType value){ set<expectedType>(getStorageIdx(coordIdx), value); } std::string toString() const; inline void print() const { printf("%s\n", toString().c_str()); } std::shared_ptr<Tensor> grad() { if (!mGrad) { mGrad = std::make_shared<Tensor>(mDataType); mGrad->resize(mDims); if (mImpl) mGrad->setBackend(mImpl->backend()); } return mGrad; } /** * @brief From the the 1D contiguous index, return the coordinate of an element in the tensor. * Beware: do not use this function with the storage index! * * @param flatIdx 1D contiguous index of the value considering a flatten, contiguous, tensor. * @return std::vector<DimSize_t> */ std::vector<std::size_t> getCoord(std::size_t flatIdx) const { std::vector<std::size_t> coordIdx = std::vector<std::size_t>(mDims.size()); std::size_t idx = flatIdx; for (std::size_t i = mDims.size() - 1; i > 0; --i){ coordIdx[i] = (idx % mDims[i]); idx/=mDims[i]; } coordIdx[0] = idx % mDims[0]; return coordIdx; } /** * @brief From the coordinate returns the 1D contiguous index of an element in the tensor. * If the number of coordinates is inferior to the number of dimensions, * the remaining coordinates are assumed to be 0. * Beware: the contiguous index will only correspond to the storage index * if the tensor is contiguous! * * @param coordIdx Coordinate to an element in the tensor * @return DimSize_t Contiguous index */ std::size_t getIdx(const std::vector<std::size_t>& coordIdx) const { AIDGE_ASSERT(coordIdx.size() <= mDims.size(), "Coordinates does not match number of dimensions"); std::size_t flatIdx = 0; std::size_t i = 0; for(; i < coordIdx.size() - 1; ++i){ AIDGE_ASSERT(coordIdx[i] < mDims[i], "Coordinates dimensions does not fit the dimensions of the tensor"); flatIdx = (flatIdx + coordIdx[i]) * mDims[i + 1]; } return flatIdx + coordIdx[i]; } /** * @brief From the coordinate returns the 1D storage index of an element in the tensor. * If the number of coordinates is inferior to the number of dimensions, * the remaining coordinates are assumed to be 0. * * @param coordIdx Coordinate to an element in the tensor * @return DimSize_t Storage index */ std::size_t getStorageIdx(const std::vector<std::size_t>& coordIdx) const { AIDGE_ASSERT(coordIdx.size() <= mDims.size(), "Coordinates does not match number of dimensions"); return std::inner_product(coordIdx.begin(), coordIdx.end(), mStrides.begin(), DimSize_t(0)); } /** * @brief Returns a sub-tensor with one or more dimension less. * For instance, t.extract({1}) on a CHW tensor will return the HW tensor * of channel #1. * Likewise, t.extract({0, 1}) on a NCHW tensor will return the HW tensor * of batch #0 and channel #1. * No memory copy is performed, the returned tensor does not own the memory. * If the number of coordinates matches the number of dimensions, an empty * tensor is returned. * It current tensor was contiguous, the returned tensor is garanteed to be * contiguous as well. * * @param coordIdx Coordinates of the sub-tensor to extract * @return Tensor Sub-tensor. */ Tensor extract(const std::vector<std::size_t>& coordIdx) const; /** * @brief Returns a sub-tensor at some coordinate and with some dimension. * * @param coordIdx First coordinates of the sub-tensor to extract * @param dims Dimensions of the sub-tensor to extract * @return Tensor Sub-tensor. */ Tensor extract(const std::vector<std::size_t>& coordIdx, const std::vector<std::size_t>& dims) const; /** * @brief Make the tensor's storage contiguous, if it is not already the case. * If not contiguous, a new memory space is allocated. */ void makeContiguous(); /** * Copy-cast data from a Tensor on the same device. * If current tensor backend/device is set and is different from src, an * assertion is raised. * @param src Source tensor to copy-cast from. */ void copyCast(const Tensor& src); /** * Copy data from a Tensor from another backend/device. * If current tensor data type is set and is different from src, an * assertion is raised. * @param src Source tensor to copy from. */ void copyFrom(const Tensor& src); /** * Copy-cast data from a Tensor. * @param src Source tensor to copy-cast from. * @param movedSrc shared_ptr to an indermediate Tensor that will * contain the moved data if a device change should occur AND a type * conversion is necessary (otherwise it remains unused). * Any data already present will be overwritten. No new memory allocation * will occur if movedSrc has already been allocated with the right * type/size/device. * If required, memory is always allocated on current (destination) * Tensor's device. */ void copyCastFrom(const Tensor& src, std::shared_ptr<Tensor>& movedSrc); /** * Copy-cast data from a Tensor. * In case of both a device change AND a data type conversion, an * intermediate buffer on will be allocated and deallocated each time. * If required, buffer's memory is always allocated on current (destination) * Tensor's device. * @param src Source tensor to copy-cast from. */ void copyCastFrom(const Tensor& src) { // Internal buffer will be allocated and deallocated at each call // (only if needed) std::shared_ptr<Tensor> movedSrc; copyCastFrom(src, movedSrc); } /** * Return a reference to a Tensor that is garanteed to be contiguous: * - itself, if already contiguous; * - the provided Tensor, overwritten with the copied data. * The data type, backend and device stay the same. * @param fallback A shared_ptr to Tensor ready to be overwritten if necessary. * The shared_ptr does not need to be initialized. No new memory allocation * will occur if fallback has already been allocated with the right * type/size/device. * @return Reference to either itself or to fallback. */ Tensor& refContiguous(std::shared_ptr<Tensor>& fallback); const Tensor& refContiguous(std::shared_ptr<Tensor>& fallback) const; /** * Return a reference to a Tensor casted to the desired data type: * - itself, if already at the right data type; * - the provided Tensor, overwritten with the copy-casted data. * The backend stays the same. * @param fallback A shared_ptr to Tensor ready to be overwritten if necessary. * The shared_ptr does not need to be initialized. No new memory allocation * will occur if fallback has already been allocated with the right * type/size/device. * @param dt The desired data type. * @return Reference to either itself or to fallback. */ Tensor& refCast(std::shared_ptr<Tensor>& fallback, const Aidge::DataType& dt); const Tensor& refCast(std::shared_ptr<Tensor>& fallback, const Aidge::DataType& dt) const; /** * Return a reference to a Tensor on the desired backend/device: * - itself, if already on the right device; * - the provided Tensor, overwritten with the copied data. * The data type stays the same. * @param fallback A shared_ptr to Tensor ready to be overwritten if necessary. * The shared_ptr does not need to be initialized. No new memory allocation * will occur if fallback has already been allocated with the right * type/size/device. * @param backend The desired backend. * @param device The desired device. * @return Reference to either itself or to fallback. */ Tensor& refFrom(std::shared_ptr<Tensor>& fallback, const std::string &backend, DeviceIdx_t device = 0); const Tensor& refFrom(std::shared_ptr<Tensor>& fallback, const std::string &backend, DeviceIdx_t device = 0) const; /** * Return a reference to a Tensor on desired data type and backend/device: * - itself, if already with the right characteristics; * - the provided Tensor, overwritten with the copy-casted data. * If required, fallback is always allocated on desired (destination) * device. * @param fallback A shared_ptr to Tensor ready to be overwritten if necessary. * The shared_ptr does not need to be initialized. No new memory allocation * will occur if fallback has already been allocated with the right * type/size/device. * @param dt The desired data type. * @param backend The desired backend. * @param device The desired device. * @return Reference to either itself or to fallback. */ Tensor& refCastFrom(std::shared_ptr<Tensor>& fallback, const Aidge::DataType& dt, const std::string &backend, DeviceIdx_t device = 0) { // First refFrom, to ensure that fallback, if required, is also on desired device return refFrom(fallback, backend, device).refCast(fallback, dt); } /** * Return a reference to a Tensor with same characteristics * (data type, backend/device) as targetReqs Tensor: * - itself, if already with the right characteristics; * - the provided Tensor, overwritten with the copy-casted data. * If required, fallback is always allocated on current (destination) * Tensor's device. * @param fallback A shared_ptr to Tensor ready to be overwritten if necessary. * The shared_ptr does not need to be initialized. No new memory allocation * will occur if fallback has already been allocated with the right * type/size/device. * @param targetReqs Tensor with the desired target characteristics. * @return Reference to either itself or to fallback. */ Tensor& refCastFrom(std::shared_ptr<Tensor>& fallback, const Tensor& targetReqs) { const auto& device = targetReqs.getImpl()->device(); return refCastFrom(fallback, targetReqs.dataType(), device.first, device.second); } /** * @brief Return a reference to a Tensor on desired data type and backend/device: * - itself, if already with the right characteristics; * - the provided Tensor, overwritten with the right characteristics. * @note no data is copy-casted. If it was so in a previous refCastFrom() on * the same fallback, it remains valid, otherwise, data is invalid. * @param fallback A shared_ptr to Tensor ready to be overwritten if necessary. * The shared_ptr does not need to be initialized. No new memory allocation * will occur if fallback has already been allocated with the right * type/size/device. * @param dt The desired data type. * @param backend The desired backend. * @param device The desired device. * @return Reference to either itself or to fallback. */ Tensor& ref(std::shared_ptr<Tensor>& fallback, const Aidge::DataType& dt, const std::string &backend, DeviceIdx_t device = 0); const Tensor& ref(std::shared_ptr<Tensor>& fallback, const Aidge::DataType& dt, const std::string &backend, DeviceIdx_t device = 0) const; /** * @brief Return a reference to a Tensor with same characteristics * (data type, backend/device) as targetReqs Tensor: * - itself, if already with the right characteristics; * - the provided Tensor, overwritten with the right characteristics. * @note no data is copy-casted. If it was so in a previous refCastFrom() on * the same fallback, it remains valid, otherwise, data is invalid. * @param fallback A shared_ptr to Tensor ready to be overwritten if necessary. * The shared_ptr does not need to be initialized. No new memory allocation * will occur if fallback has already been allocated with the right * type/size/device. * @param targetReqs Tensor with the desired target characteristics. * @return Reference to either itself or to fallback. */ Tensor& ref(std::shared_ptr<Tensor>& fallback, const Tensor& targetReqs) { const auto& device = targetReqs.getImpl()->device(); return ref(fallback, targetReqs.dataType(), device.first, device.second); } private: /** * @brief Compute the number of elements in the Tensor. * @note If dimensions are not empty, they are multiplied to get the total number * of elements. Else, the Tensor represents a scalar and contains a single element. */ void computeSize() { mSize = std::accumulate(mDims.begin(), mDims.end(), DimSize_t(1), std::multiplies<DimSize_t>()); } }; } // namespace Aidge #endif /* AIDGE_CORE_DATA_TENSOR_H_ */