/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #ifndef AIDGE_CORE_OPERATOR_CONCAT_H_ #define AIDGE_CORE_OPERATOR_CONCAT_H_ #include <numeric> #include <vector> #include <cmath> #include <memory> #include <vector> #include "aidge/utils/Registrar.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Types.h" namespace Aidge { enum class ConcatAttr { Axis }; class Concat_Op : public OperatorTensor, public Registrable<Concat_Op, std::string, std::unique_ptr<OperatorImpl>(const Concat_Op&)>, public StaticAttributes<ConcatAttr, DimSize_t> { public: static const std::string Type; using Attributes_ = StaticAttributes<ConcatAttr, DimSize_t>; template <ConcatAttr e> using attr = typename Attributes_::template attr<e>; Concat_Op(const IOIndex_t nbIn, const DimSize_t axis) : OperatorTensor(Type, nbIn, 0, 1), Attributes_(attr<ConcatAttr::Axis>(axis)) { if (nbIn == 0) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Add operator should have at least one input."); } } /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ Concat_Op(const Concat_Op& op) : OperatorTensor(op), Attributes_(op) { mImpl = op.mImpl ? Registrar<Concat_Op>::create(op.mOutputs[0]->getImpl()->backend())(*this) : nullptr; } /** * @brief Clone the operator using its copy-constructor. * @see Operator::Concat_Op */ std::shared_ptr<Operator> clone() const override { return std::make_shared<Concat_Op>(*this); } // Data operator[](const char* inputName) override final { // std::shared_ptr<Tensor> in = (strcmp(inputName, "data")) ? mInputs[0] : // (strcmp(inputName, "weight") ? mInputs[1] : // (strcmp(inputName, "bias") ? mInputs[2] : // nullptr)); // assert((in!=nullptr) && "No such parameter"); // return *in; // } void computeOutputDims() override final { // Every input is non-empty with the same number of dimensions bool associated = (getInput(0) != nullptr); associated &= !(getInput(0)->empty()) && (getAttr<ConcatAttr::Axis>() < getInput(0)->nbDims()); // do not compute anything if no input auto outputDims = getInput(0)->dims(); const auto firstInputNbDims = getInput(0) -> nbDims(); for (IOIndex_t i = 1; i < nbInputs(); ++i) { if (!getInput(i)) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Every input should be associated with a Tensor"); } associated &= (getInput(i)->nbDims() == firstInputNbDims); for (DimSize_t dim = 0; dim < firstInputNbDims; ++dim) { if (dim == getAttr<ConcatAttr::Axis>()) { outputDims[dim] += getInput(i)->dims()[dim]; } else { associated &= (getInput(i)->dims()[dim] == outputDims[dim]); } } } if (associated) { getOutput(0)->resize(outputDims); } } void setBackend(const std::string& name, DeviceIdx_t device = 0) override { mImpl = Registrar<Concat_Op>::create(name)(*this); mOutputs[0]->setBackend(name, device); } static const std::vector<std::string> getInputsName(){ return {"data_input_0", "data_input_n"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; } }; inline std::shared_ptr<Node> Concat(const IOIndex_t nbIn, const DimIdx_t axis = 0, const std::string& name = "") { return std::make_shared<Node>(std::make_shared<Concat_Op>(nbIn, axis), name); } } namespace { template <> const char* const EnumStrings<Aidge::ConcatAttr>::data[] = { "Axis" }; } #endif /* AIDGE_CORE_OPERATOR_CONCAT_H_ */