/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #ifndef AIDGE_CORE_OPERATOR_CONV_H_ #define AIDGE_CORE_OPERATOR_CONV_H_ #include <array> #include <cmath> #include <numeric> #include <vector> #include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/operator/Producer.hpp" #include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" namespace Aidge { enum class ConvAttr { StrideDims, DilationDims, InChannels, OutChannels, KernelDims }; template <DimIdx_t DIM> class Conv_Op : public OperatorTensor, public Registrable<Conv_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const Conv_Op<DIM> &)>, public StaticAttributes<ConvAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t, DimSize_t, std::array<DimSize_t, DIM>> { public: static constexpr const char *Type = "Conv"; Conv_Op() = delete; using Attributes_ = StaticAttributes<ConvAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t, DimSize_t, std::array<DimSize_t, DIM>>; template <ConvAttr e> using attr = typename Attributes_::template attr<e>; constexpr Conv_Op(DimSize_t in_channels, DimSize_t out_channels, const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) : OperatorTensor(Type, 1, 2, 1), Attributes_(attr<ConvAttr::StrideDims>(stride_dims), attr<ConvAttr::DilationDims>(dilation_dims), attr<ConvAttr::InChannels>(in_channels), attr<ConvAttr::OutChannels>(out_channels), attr<ConvAttr::KernelDims>(kernel_dims)) { setDataType(DataType::Float32); } /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ Conv_Op(const Conv_Op<DIM>& op) : OperatorTensor(Type, 1, 2, 1), Attributes_(op), mOutput(std::make_shared<Tensor>(*op.mOutput)) { // cpy-ctor setDataType(op.mOutput->dataType()); mImpl = op.mImpl ? Registrar<Conv_Op<DIM>>::create(mOutput->getImpl()->backend())(*this) : nullptr; } /** * @brief Clone the operator using its copy-constructor. * @see Operator::Conv_Op */ std::shared_ptr<Operator> clone() const override { return std::make_shared<Conv_Op<DIM>>(*this); } // Data operator[](const char* inputName) override final { // std::shared_ptr<Tensor> in = (strcmp(inputName, "data")) ? mInputs[0] : // (strcmp(inputName, "weight") ? mInputs[1] : // (strcmp(inputName, "bias") ? mInputs[2] : // nullptr)); // assert((in!=nullptr) && "No such parameter"); // return *in; // } // std::shared_ptr<Conv_Op> clone() const override final { // } void computeOutputDims() override final { if (!mInputs[0]->empty()) { std::array<DimSize_t, DIM + 2> outputDims = {}; for (std::size_t dim = 0; dim < this->template getAttr<ConvAttr::KernelDims>().size() ; ++dim) { const DimSize_t kernelExtent = this->template getAttr<ConvAttr::DilationDims>()[dim] * (this->template getAttr<ConvAttr::KernelDims>()[dim] - 1) + 1; outputDims[dim+2] = 1 + static_cast<DimSize_t>( floor(static_cast<float>(mInputs[0]->dims()[dim+2] - kernelExtent) / static_cast<float>(this->template getAttr<ConvAttr::StrideDims>()[dim]))); } outputDims[1] = this->template getAttr<ConvAttr::OutChannels>(); outputDims[0] = mInputs[0]->dims()[0]; mOutput->resize(outputDims); } } void setBackend(const std::string &name) override { mImpl = Registrar<Conv_Op<DIM>>::create(name)(*this); mOutput->setBackend(name); // FIXME: temporary workaround mInputs[1]->setBackend(name); mInputs[2]->setBackend(name); } static const std::vector<std::string> getInputsName(){ return {"data_input", "weight", "bias"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; } }; template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> Conv(DimSize_t in_channels, DimSize_t out_channels, const std::array<DimSize_t, DIM> &kernel_dims, const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) { // FIXME: properly handle default w&b initialization in every cases static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported"); auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(in_channels, out_channels, kernel_dims, stride_dims, dilation_dims), name); // addProducer(conv, 1, append(append(kernel_dims, in_channels), out_channels), "w"); addProducer(conv, 1, append(out_channels, append(in_channels, kernel_dims)), "w"); addProducer(conv, 2, std::array<DimSize_t, 1>({out_channels}), "b"); return conv; } // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction template <DimSize_t DIM> inline std::shared_ptr<Node> Conv( DimSize_t in_channels, DimSize_t out_channels, DimSize_t const (&kernel_dims)[DIM], const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported"); return Conv(in_channels, out_channels, to_array(kernel_dims), name, stride_dims, dilation_dims); } } // namespace Aidge namespace { template <> const char *const EnumStrings<Aidge::ConvAttr>::data[] = { "StrideDims", "DilationDims", "InChannels", "OutChannels", "KernelDims" }; } #endif /* AIDGE_CORE_OPERATOR_CONV_H_ */