diff --git a/include/aidge/aidge.hpp b/include/aidge/aidge.hpp index 95115189a22eef3391b504e5f2313f388bd815bd..c3f97f96e6b797afca7a28928f717691ae998185 100644 --- a/include/aidge/aidge.hpp +++ b/include/aidge/aidge.hpp @@ -36,6 +36,7 @@ #include "aidge/operator/MatMul.hpp" #include "aidge/operator/MaxPooling.hpp" #include "aidge/operator/MetaOperator.hpp" +#include "aidge/operator/MetaOperatorDefs.hpp" #include "aidge/operator/Operator.hpp" #include "aidge/operator/Producer.hpp" #include "aidge/operator/ReLU.hpp" diff --git a/include/aidge/operator/MetaOperator.hpp b/include/aidge/operator/MetaOperator.hpp index 85f61a18f923c34f08dcce9385505a54a5420173..ae62a118122fa4e577f0ab898799ca40a567742d 100644 --- a/include/aidge/operator/MetaOperator.hpp +++ b/include/aidge/operator/MetaOperator.hpp @@ -41,68 +41,7 @@ public: public: MetaOperator_Op(const char *type, const std::shared_ptr<GraphView>& graph, std::vector<NodePtr> inputNodes = std::vector<NodePtr>(), - std::vector<NodePtr> outputNodes = std::vector<NodePtr>()) - : Operator(type), - mGraph(graph) - { - mInputs = std::vector<std::shared_ptr<Tensor>>(mGraph->inputs().size()); - for (std::size_t i = 0; i < mInputs.size(); ++i) { - mInputs[i] = std::make_shared<Tensor>(); - } - mOutputs = std::vector<std::shared_ptr<Tensor>>(mGraph->outputs().size()); - for (std::size_t i = 0; i < mOutputs.size(); ++i) { - mOutputs[i] = std::make_shared<Tensor>(); - } - - // Fill inputsNodes and outputsNodes when there is no ambiguity - if (inputNodes.empty()) { - AIDGE_ASSERT(mGraph->inputNodes().size() == 1, "need to specify internal nodes input mapping"); - inputNodes.push_back(*mGraph->inputNodes().begin()); - } - - if (outputNodes.empty()) { - AIDGE_ASSERT(mGraph->outputNodes().size() == 1, "need to specify internal nodes output mapping"); - outputNodes.push_back(*mGraph->outputNodes().begin()); - } - - AIDGE_ASSERT(mGraph->inputNodes().size() == inputNodes.size(), "wrong number of specified input nodes"); - AIDGE_ASSERT(mGraph->outputNodes().size() == outputNodes.size(), "wrong number of specified output nodes"); - - // Identify inputs that are outside the micro-graph - for (const auto& inputNode : inputNodes) { - AIDGE_ASSERT(mGraph->inView(inputNode), "input node must be in the graph"); - const std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> inputNodeinputs = - inputNode->inputs(); - - int inputIdx = 0; // input idx relative to the current node - for (const auto& in : inputNodeinputs) { - if (in.first == nullptr || !mGraph->inView(in.first)) { - // The input is not connected inside the micro-graph - // (no connection to this input or connection outside the micro-graph) - // => it is therefore an input for the meta-operator - mInputOps.push_back(std::make_pair(inputNode->getOperator(), inputIdx)); - } - - ++inputIdx; - } - } - - // The outputs of the output nodes are also the outputs of the meta-operator - for (const auto& outputNode : outputNodes) { - AIDGE_ASSERT(mGraph->inView(outputNode), "output node must be in the graph"); - const std::vector<std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>>> outputNodeoutputs = - outputNode->outputs(); - - int outputIdx = 0; // output idx relative to the current node - for (const auto& out : outputNodeoutputs) { - mOutputOps.push_back(std::make_pair(outputNode->getOperator(), outputIdx)); - ++outputIdx; - } - } - - AIDGE_INTERNAL_ASSERT(mInputOps.size() == mGraph->inputs().size()); - AIDGE_INTERNAL_ASSERT(mOutputOps.size() == mGraph->outputs().size()); - } + std::vector<NodePtr> outputNodes = std::vector<NodePtr>()); /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). @@ -208,71 +147,12 @@ public: inline IOIndex_t nbDataInputs() const noexcept override final { return mGraph->dataInputs().size(); } inline IOIndex_t nbOutputs() const noexcept override final { return mGraph->outputs().size(); } - NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override { - if (mImpl) { - return mImpl->getNbRequiredData(inputIdx); - } - else { - const auto& inputOp = mInputOps[inputIdx]; - return inputOp.first->getNbRequiredData(inputOp.second); - } - } - - NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override { - if (mImpl) { - return mImpl->getNbConsumedData(inputIdx); - } - else { - const auto& inputOp = mInputOps[inputIdx]; - return inputOp.first->getNbConsumedData(inputOp.second); - } - } - - NbElts_t getNbProducedData(IOIndex_t outputIdx) const override { - if (mImpl) { - return mImpl->getNbProducedData(outputIdx); - } - else { - const auto& outputOp = mOutputOps[outputIdx]; - return outputOp.first->getNbProducedData(outputOp.second); - } - } - - void updateConsummerProducer() override { - if (mImpl) { - mImpl->updateConsummerProducer(); - } - else { - if (!mScheduler) { - // Lazy initialization - mScheduler = std::make_shared<SequentialScheduler>(mGraph); - } - - // TODO: check that generateScheduling() can be called multiple time to iteratively update the schedule. - // It could be a good idea to unify updateConsummerProducer() and generateScheduling() into a "updateScheduling()" - mScheduler->generateScheduling(); - } - } - - void forward() override { - if (mImpl) { - // A custom implementation exists for this meta operator - mImpl->forward(); - } - else { - // No custom implementation, use the individual operators implementations - if (!mScheduler) { - // Lazy initialization - // TODO: should we assert that a scheduler already exists at this point? - // => should be created in updateConsummerProducer() - mScheduler = std::make_shared<SequentialScheduler>(mGraph); - mScheduler->generateScheduling(); - } - - mScheduler->forward(false); - } - } + NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override; + NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override; + NbElts_t getNbProducedData(IOIndex_t outputIdx) const override; + void updateConsummerProducer() override; + void forward() override; void backward() override { assert(false && "not implemented"); } @@ -285,73 +165,6 @@ inline std::shared_ptr<Node> MetaOperator(const char *type, { return std::make_shared<Node>(std::make_shared<MetaOperator_Op>(type, graph), name); } - -// TODO: move elsewhere -template <std::array<DimSize_t, 1>::size_type DIM> -inline std::shared_ptr<Node> PaddedConv(DimSize_t in_channels, - DimSize_t out_channels, - const std::array<DimSize_t, DIM> &kernel_dims, - const std::string& name = "", - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<std::array<DimSize_t, 2>, DIM> &padding_dims = {0}, - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) -{ - // Construct micro-graph - auto pad = std::make_shared<Node>(std::make_shared<Pad_Op<static_cast<DimIdx_t>(DIM)>>(padding_dims, PadBorderType::Constant, 0.0), (!name.empty()) ? name + "_pad" : ""); - auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(in_channels, out_channels, kernel_dims, stride_dims, dilation_dims), (!name.empty()) ? name + "_conv" : ""); - // Need to specify the ordered list of input operators - const std::vector<NodePtr> orderedInputNodes = {pad, conv}; - - auto metaOp = std::make_shared<Node>(std::make_shared<MetaOperator_Op>("PaddedConv", Sequential({pad, conv}), orderedInputNodes), name); - addProducer(metaOp, 1, append(out_channels, append(in_channels, kernel_dims)), "w"); - addProducer(metaOp, 2, {out_channels}, "b"); - return metaOp; -} - -template <DimSize_t DIM> -inline std::shared_ptr<Node> PaddedConv( - DimSize_t in_channels, - DimSize_t out_channels, - DimSize_t const (&kernel_dims)[DIM], - const std::string& name = "", - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<std::array<DimSize_t, 2>, DIM> &padding_dims = {0}, - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) -{ - return PaddedConv<DIM>(in_channels, out_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims); -} - -template <std::array<DimSize_t, 1>::size_type DIM> -inline std::shared_ptr<Node> PaddedAvgPooling(DimSize_t in_channels, - DimSize_t out_channels, - const std::array<DimSize_t, DIM> &kernel_dims, - const std::string& name = "", - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<std::array<DimSize_t, 2>, DIM> &padding_dims = {0}) -{ - auto graph = Sequential({ - Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""), - AvgPooling_Op<DIM>(kernel_dims, (!name.empty()) ? name + "_avgpooling" : "", stride_dims) - }); - - return std::make_shared<Node>(std::make_shared<MetaOperator_Op>("PaddedAvgPooling", graph), name); -} - -template <std::array<DimSize_t, 1>::size_type DIM> -inline std::shared_ptr<Node> PaddedMaxPooling(DimSize_t in_channels, - DimSize_t out_channels, - const std::array<DimSize_t, DIM> &kernel_dims, - const std::string& name = "", - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<std::array<DimSize_t, 2>, DIM> &padding_dims = {0}) -{ - auto graph = Sequential({ - Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""), - MaxPooling_Op<DIM>(kernel_dims, (!name.empty()) ? name + "_maxpooling" : "", stride_dims) - }); - - return std::make_shared<Node>(std::make_shared<MetaOperator_Op>("PaddedMaxPooling", graph), name); -} } // namespace Aidge #endif /* MetaOperator_H_ */ diff --git a/include/aidge/operator/MetaOperatorDefs.hpp b/include/aidge/operator/MetaOperatorDefs.hpp new file mode 100644 index 0000000000000000000000000000000000000000..346905dc9eb7cfcd7e5fab80788a6c773d001476 --- /dev/null +++ b/include/aidge/operator/MetaOperatorDefs.hpp @@ -0,0 +1,85 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_METAOPERATORDEFS_H_ +#define AIDGE_CORE_OPERATOR_METAOPERATORDEFS_H_ + +#include "aidge/operator/MetaOperator.hpp" + +namespace Aidge { +template <std::array<DimSize_t, 1>::size_type DIM> +inline std::shared_ptr<Node> PaddedConv(DimSize_t in_channels, + DimSize_t out_channels, + const std::array<DimSize_t, DIM> &kernel_dims, + const std::string& name = "", + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<std::array<DimSize_t, 2>, DIM> &padding_dims = {0}, + const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) +{ + // Construct micro-graph + auto pad = std::make_shared<Node>(std::make_shared<Pad_Op<static_cast<DimIdx_t>(DIM)>>(padding_dims, PadBorderType::Constant, 0.0), (!name.empty()) ? name + "_pad" : ""); + auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(in_channels, out_channels, kernel_dims, stride_dims, dilation_dims), (!name.empty()) ? name + "_conv" : ""); + // Need to specify the ordered list of input operators + const std::vector<NodePtr> orderedInputNodes = {pad, conv}; + + auto metaOp = std::make_shared<Node>(std::make_shared<MetaOperator_Op>("PaddedConv", Sequential({pad, conv}), orderedInputNodes), name); + addProducer(metaOp, 1, append(out_channels, append(in_channels, kernel_dims)), "w"); + addProducer(metaOp, 2, {out_channels}, "b"); + return metaOp; +} + +template <DimSize_t DIM> +inline std::shared_ptr<Node> PaddedConv( + DimSize_t in_channels, + DimSize_t out_channels, + DimSize_t const (&kernel_dims)[DIM], + const std::string& name = "", + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<std::array<DimSize_t, 2>, DIM> &padding_dims = {0}, + const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) +{ + return PaddedConv<DIM>(in_channels, out_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims); +} + +template <std::array<DimSize_t, 1>::size_type DIM> +inline std::shared_ptr<Node> PaddedAvgPooling(DimSize_t in_channels, + DimSize_t out_channels, + const std::array<DimSize_t, DIM> &kernel_dims, + const std::string& name = "", + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<std::array<DimSize_t, 2>, DIM> &padding_dims = {0}) +{ + auto graph = Sequential({ + Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""), + AvgPooling_Op<DIM>(kernel_dims, (!name.empty()) ? name + "_avgpooling" : "", stride_dims) + }); + + return std::make_shared<Node>(std::make_shared<MetaOperator_Op>("PaddedAvgPooling", graph), name); +} + +template <std::array<DimSize_t, 1>::size_type DIM> +inline std::shared_ptr<Node> PaddedMaxPooling(DimSize_t in_channels, + DimSize_t out_channels, + const std::array<DimSize_t, DIM> &kernel_dims, + const std::string& name = "", + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<std::array<DimSize_t, 2>, DIM> &padding_dims = {0}) +{ + auto graph = Sequential({ + Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""), + MaxPooling_Op<DIM>(kernel_dims, (!name.empty()) ? name + "_maxpooling" : "", stride_dims) + }); + + return std::make_shared<Node>(std::make_shared<MetaOperator_Op>("PaddedMaxPooling", graph), name); +} +} // namespace Aidge + +#endif /* AIDGE_CORE_OPERATOR_METAOPERATORDEFS_H_ */ diff --git a/src/operator/MetaOperator.cpp b/src/operator/MetaOperator.cpp new file mode 100644 index 0000000000000000000000000000000000000000..69780b87505634d21a033a97f41243a301689730 --- /dev/null +++ b/src/operator/MetaOperator.cpp @@ -0,0 +1,140 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/MetaOperator.hpp" + +Aidge::MetaOperator_Op::MetaOperator_Op(const char *type, const std::shared_ptr<GraphView>& graph, + std::vector<NodePtr> inputNodes, + std::vector<NodePtr> outputNodes) + : Operator(type), + mGraph(graph) +{ + mInputs = std::vector<std::shared_ptr<Tensor>>(mGraph->inputs().size()); + for (std::size_t i = 0; i < mInputs.size(); ++i) { + mInputs[i] = std::make_shared<Tensor>(); + } + mOutputs = std::vector<std::shared_ptr<Tensor>>(mGraph->outputs().size()); + for (std::size_t i = 0; i < mOutputs.size(); ++i) { + mOutputs[i] = std::make_shared<Tensor>(); + } + + // Fill inputsNodes and outputsNodes when there is no ambiguity + if (inputNodes.empty()) { + AIDGE_ASSERT(mGraph->inputNodes().size() == 1, "need to specify internal nodes input mapping"); + inputNodes.push_back(*mGraph->inputNodes().begin()); + } + + if (outputNodes.empty()) { + AIDGE_ASSERT(mGraph->outputNodes().size() == 1, "need to specify internal nodes output mapping"); + outputNodes.push_back(*mGraph->outputNodes().begin()); + } + + AIDGE_ASSERT(mGraph->inputNodes().size() == inputNodes.size(), "wrong number of specified input nodes"); + AIDGE_ASSERT(mGraph->outputNodes().size() == outputNodes.size(), "wrong number of specified output nodes"); + + // Identify inputs that are outside the micro-graph + for (const auto& inputNode : inputNodes) { + AIDGE_ASSERT(mGraph->inView(inputNode), "input node must be in the graph"); + const std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> inputNodeinputs = + inputNode->inputs(); + + int inputIdx = 0; // input idx relative to the current node + for (const auto& in : inputNodeinputs) { + if (in.first == nullptr || !mGraph->inView(in.first)) { + // The input is not connected inside the micro-graph + // (no connection to this input or connection outside the micro-graph) + // => it is therefore an input for the meta-operator + mInputOps.push_back(std::make_pair(inputNode->getOperator(), inputIdx)); + } + + ++inputIdx; + } + } + + // The outputs of the output nodes are also the outputs of the meta-operator + for (const auto& outputNode : outputNodes) { + AIDGE_ASSERT(mGraph->inView(outputNode), "output node must be in the graph"); + const std::vector<std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>>> outputNodeoutputs = + outputNode->outputs(); + + for (int outputIdx = 0; outputIdx < outputNodeoutputs.size(); ++outputIdx) { + mOutputOps.push_back(std::make_pair(outputNode->getOperator(), outputIdx)); + } + } + + AIDGE_INTERNAL_ASSERT(mInputOps.size() == mGraph->inputs().size()); + AIDGE_INTERNAL_ASSERT(mOutputOps.size() == mGraph->outputs().size()); +} + +Aidge::NbElts_t Aidge::MetaOperator_Op::getNbRequiredData(const IOIndex_t inputIdx) const { + if (mImpl) { + return mImpl->getNbRequiredData(inputIdx); + } + else { + const auto& inputOp = mInputOps[inputIdx]; + return inputOp.first->getNbRequiredData(inputOp.second); + } +} + +Aidge::NbElts_t Aidge::MetaOperator_Op::getNbConsumedData(IOIndex_t inputIdx) const { + if (mImpl) { + return mImpl->getNbConsumedData(inputIdx); + } + else { + const auto& inputOp = mInputOps[inputIdx]; + return inputOp.first->getNbConsumedData(inputOp.second); + } +} + +Aidge::NbElts_t Aidge::MetaOperator_Op::getNbProducedData(IOIndex_t outputIdx) const { + if (mImpl) { + return mImpl->getNbProducedData(outputIdx); + } + else { + const auto& outputOp = mOutputOps[outputIdx]; + return outputOp.first->getNbProducedData(outputOp.second); + } +} + +void Aidge::MetaOperator_Op::updateConsummerProducer() { + if (mImpl) { + mImpl->updateConsummerProducer(); + } + else { + if (!mScheduler) { + // Lazy initialization + mScheduler = std::make_shared<SequentialScheduler>(mGraph); + } + + // TODO: check that generateScheduling() can be called multiple time to iteratively update the schedule. + // It could be a good idea to unify updateConsummerProducer() and generateScheduling() into a "updateScheduling()" + mScheduler->generateScheduling(); + } +} + +void Aidge::MetaOperator_Op::forward() { + if (mImpl) { + // A custom implementation exists for this meta operator + mImpl->forward(); + } + else { + // No custom implementation, use the individual operators implementations + if (!mScheduler) { + // Lazy initialization + // TODO: should we assert that a scheduler already exists at this point? + // => should be created in updateConsummerProducer() + mScheduler = std::make_shared<SequentialScheduler>(mGraph); + mScheduler->generateScheduling(); + } + + mScheduler->forward(false); + } +}