diff --git a/include/aidge/operator/ReduceMean.hpp b/include/aidge/operator/ReduceMean.hpp index 5c5531f343661f3e536d2519615e030c559a8256..ab27e4e0233052f7cc155ed0375175a27d3edcf5 100644 --- a/include/aidge/operator/ReduceMean.hpp +++ b/include/aidge/operator/ReduceMean.hpp @@ -12,14 +12,11 @@ #ifndef AIDGE_CORE_OPERATOR_REDUCEMEAN_H_ #define AIDGE_CORE_OPERATOR_REDUCEMEAN_H_ -#include <algorithm> // std::for_each, std::sort -#include <array> #include <cstdint> // std::int32_t #include <memory> -#include <stdexcept> // std::runtime_error +#include <string> #include <vector> -#include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/operator/Producer.hpp" @@ -31,21 +28,20 @@ namespace Aidge { enum class ReduceMeanAttr { Axes, KeepDims }; -template <DimIdx_t DIM> class ReduceMean_Op : public OperatorTensor, - public Registrable<ReduceMean_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const ReduceMean_Op<DIM> &)>, - public StaticAttributes<ReduceMeanAttr, std::array<std::int32_t, DIM>, DimSize_t> { + public Registrable<ReduceMean_Op, std::string, std::shared_ptr<OperatorImpl>(const ReduceMean_Op &)>, + public StaticAttributes<ReduceMeanAttr, std::vector<std::int32_t>, DimSize_t> { public: static const std::string Type; ReduceMean_Op() = delete; - using Attributes_ = StaticAttributes<ReduceMeanAttr, std::array<std::int32_t, DIM>, DimSize_t>; + using Attributes_ = StaticAttributes<ReduceMeanAttr, std::vector<std::int32_t>, DimSize_t>; template <ReduceMeanAttr e> using attr = typename Attributes_::template attr<e>; - constexpr ReduceMean_Op(const std::array<std::int32_t, DIM> &axes, DimSize_t keep_dims) + ReduceMean_Op(const std::vector<std::int32_t>& axes, DimSize_t keep_dims) : OperatorTensor(Type, 1, 0, 1), Attributes_(attr<ReduceMeanAttr::Axes>(axes), attr<ReduceMeanAttr::KeepDims>(keep_dims)) {} @@ -54,13 +50,13 @@ class ReduceMean_Op : public OperatorTensor, * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ - ReduceMean_Op(const ReduceMean_Op<DIM>& op) + ReduceMean_Op(const ReduceMean_Op& op) : OperatorTensor(op), Attributes_(op) { if (op.mImpl){ - SET_IMPL_MACRO(ReduceMean_Op<DIM>, *this, op.backend()); - }else{ + SET_IMPL_MACRO(ReduceMean_Op, *this, op.backend()); + } else { mImpl = nullptr; } } @@ -70,72 +66,51 @@ class ReduceMean_Op : public OperatorTensor, * @see Operator::ReduceMean_Op */ std::shared_ptr<Operator> clone() const override { - return std::make_shared<ReduceMean_Op<DIM>>(*this); + return std::make_shared<ReduceMean_Op>(*this); } - void computeOutputDims() override final { - if (!getInput(0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Every input should be associated with a Tensor"); - } - if (!getInput(0)->empty()) { - // make Axes attribute positive - std::array<std::int32_t, DIM>& axes = this->template getAttr<ReduceMeanAttr::Axes>(); - std::for_each(axes.begin(), axes.end(), [&] (std::int32_t& val) { - if (val < 0) - val+=static_cast<std::int32_t>(getInput(0)->nbDims()); - }); - std::sort(axes.begin(), axes.end()); - - // build output dimensions - std::vector<DimSize_t> outDims = getInput(0)->dims(); - if (this->template getAttr<ReduceMeanAttr::KeepDims>()) { - std::for_each(axes.begin(), axes.end(), [&outDims] (const std::int32_t& val) { outDims[val] = 1; }); - } - else { - for (auto it = axes.crbegin(); it != axes.crend(); ++it) - outDims.erase(outDims.begin() + static_cast<std::size_t>(*it)); - } - - mOutputs[0]->resize((outDims.size()>0) ? outDims : std::vector<DimSize_t>({1})); - - } - } + void computeOutputDims() override final; - void setBackend(const std::string &name, DeviceIdx_t device = 0) override { - SET_IMPL_MACRO(ReduceMean_Op<DIM>, *this, name); - mOutputs[0]->setBackend(name, device); - } + void setBackend(const std::string &name, DeviceIdx_t device = 0) override final; - static const std::vector<std::string> getInputsName(){ + static const std::vector<std::string> getInputsName() { return {"data_input"}; } - static const std::vector<std::string> getOutputsName(){ + static const std::vector<std::string> getOutputsName() { return {"data_output"}; } }; -template <std::array<DimSize_t, 1>::size_type DIM> -inline std::shared_ptr<Node> ReduceMean(const std::array<std::int32_t, DIM> &axes, +/** + * @brief Compute the mean value of a Tensor over the provided axes. Dimensions + * may be reduced by erasing the provided axes or not. + * + * @param axes Dimensions over which data mean should be computed. + * @param keep_dims Whether or not reduced dimensions are to be erased. + * @param name Name of the Operator. + * @return std::shared_ptr<Node> Node containing the Operator. + */ +inline std::shared_ptr<Node> ReduceMean(const std::vector<std::int32_t> &axes, DimSize_t keep_dims=1, const std::string& name = "") { // FIXME: properly handle default w&b initialization in every cases - static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ReduceMean, not supported"); - return std::make_shared<Node>(std::make_shared<ReduceMean_Op<static_cast<DimIdx_t>(DIM)>>(axes, keep_dims), name); + AIDGE_ASSERT(axes.size()<=MaxDim, "Too many kernel dimensions required by ReduceMean, not supported"); + return std::make_shared<Node>(std::make_shared<ReduceMean_Op>(axes, keep_dims), name); } // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction -template <DimSize_t DIM> -inline std::shared_ptr<Node> ReduceMean( - std::int32_t const (&axes)[DIM], - DimSize_t keep_dims = 1, - const std::string& name = "") { - static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ReduceMean, not supported"); - return ReduceMean(to_array(axes), keep_dims, name); -} - -template <DimIdx_t DIM> -const std::string ReduceMean_Op<DIM>::Type = "ReduceMean"; +// template <DimSize_t DIM> +// inline std::shared_ptr<Node> ReduceMean( +// std::int32_t const (&axes)[DIM], +// DimSize_t keep_dims = 1, +// const std::string& name = "") { +// static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ReduceMean, not supported"); +// return ReduceMean(to_array(axes), keep_dims, name); +// } + +// template <DimIdx_t DIM> +// const std::string ReduceMean_Op::Type = "ReduceMean"; } // namespace Aidge