From 6b2df0668d36e46283888fe17a72506c59eaf641 Mon Sep 17 00:00:00 2001 From: Vincent TEMPLIER <vincent.templier@cea.fr> Date: Tue, 19 Sep 2023 16:14:55 +0000 Subject: [PATCH] Add MaxPool operator --- include/aidge/aidge.hpp | 1 + include/aidge/operator/MaxPooling.hpp | 174 ++++++++++++++++++ python_binding/operator/pybind_MaxPooling.cpp | 89 +++++++++ python_binding/pybind_core.cpp | 2 + 4 files changed, 266 insertions(+) create mode 100644 include/aidge/operator/MaxPooling.hpp create mode 100644 python_binding/operator/pybind_MaxPooling.cpp diff --git a/include/aidge/aidge.hpp b/include/aidge/aidge.hpp index 91386b9e5..13c360796 100644 --- a/include/aidge/aidge.hpp +++ b/include/aidge/aidge.hpp @@ -34,6 +34,7 @@ #include "aidge/operator/FC.hpp" #include "aidge/operator/GenericOperator.hpp" #include "aidge/operator/Matmul.hpp" +#include "aidge/operator/MaxPooling.hpp" //#include "aidge/operator/MetaOperator.hpp" #include "aidge/operator/Operator.hpp" #include "aidge/operator/Producer.hpp" diff --git a/include/aidge/operator/MaxPooling.hpp b/include/aidge/operator/MaxPooling.hpp new file mode 100644 index 000000000..073243e80 --- /dev/null +++ b/include/aidge/operator/MaxPooling.hpp @@ -0,0 +1,174 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_MAXPOOLING_H_ +#define AIDGE_CORE_OPERATOR_MAXPOOLING_H_ + +#include <array> +#include <numeric> +#include <vector> +#include <cmath> + +#include "aidge/data/Tensor.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/Operator.hpp" +#include "aidge/operator/Producer.hpp" +#include "aidge/utils/Parameter.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { +enum class MaxPoolingParam { StrideDims, KernelDims, PaddingDims }; + +template <DimIdx_t DIM> +class MaxPooling_Op : public Operator, + public Registrable<MaxPooling_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const MaxPooling_Op<DIM> &)>, + public Parameterizable<MaxPoolingParam, + std::array<DimSize_t, DIM>, + std::array<DimSize_t, DIM>, + std::array<DimSize_t, (DIM<<1) >> { +private: + // FIXME: change accessibility + std::shared_ptr<Tensor> mInput = std::make_shared<Tensor>(); + const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); + +public: + static constexpr const char *Type = "MaxPooling"; + + MaxPooling_Op() = delete; + + using Parameterizable_ = Parameterizable<MaxPoolingParam, + std::array<DimSize_t, DIM>, + std::array<DimSize_t, DIM>, + std::array<DimSize_t, (DIM<<1)> >; + template <MaxPoolingParam e> + using param = typename Parameterizable_::template param<e>; + + constexpr MaxPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0)) + : Operator(Type), + Parameterizable_(param<MaxPoolingParam::StrideDims>(stride_dims), + param<MaxPoolingParam::KernelDims>(kernel_dims), + param<MaxPoolingParam::PaddingDims>(padding_dims)), + mOutput(std::make_shared<Tensor>()) { + setDatatype(DataType::Float32); + } + + constexpr void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { + assert(inputIdx < 1 && "operators supports only 3 inputs"); + (void) inputIdx; // avoid unused warning + assert(strcmp(data->type(), Tensor::Type) == 0 && "input data must be of Tensor type"); + + mInput = std::dynamic_pointer_cast<Tensor>(data); + } + + constexpr void computeOutputDims() override final { + if (!mInput->empty()) { + std::array<DimSize_t, DIM + 2> outputDims = {}; + + for (std::size_t dim = 0; dim < this->template get<MaxPoolingParam::KernelDims>().size() ; ++dim) { + outputDims[dim+2] = 1 + static_cast<DimSize_t>( + std::floor(static_cast<float>(mInput->dims()[dim+2] - + this->template get<MaxPoolingParam::KernelDims>()[dim] + + this->template get<MaxPoolingParam::PaddingDims>()[dim] + + this->template get<MaxPoolingParam::PaddingDims>()[dim+DIM]) / + static_cast<float>(this->template get<MaxPoolingParam::StrideDims>()[dim]))); + } + outputDims[1] = mInput->dims()[1]; + outputDims[0] = mInput->dims()[0]; + mOutput->resize(outputDims); + } + } + + bool outputDimsForwarded() const override final { return !(mOutput->empty()); } + + + inline Tensor& input(const IOIndex_t inputIdx) const override final { + assert(inputIdx == 0 && "operators supports only 1 inputs"); + (void) inputIdx; // avoid unused warning + return *(mInput.get()); + } + inline Tensor& output(const IOIndex_t /*outputIdx*/) const override final { return *(mOutput.get()); } + + + inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { + assert(inputIdx == 0 && "MaxPooling Operators supports only 1 inputs"); + (void) inputIdx; // avoid unused warning + return mInput; + } + inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final { + assert(outputIdx == 0 && "MaxPooling Operators has only 1 outputs"); + (void) outputIdx; // avoid unused warning + return mOutput; + } + + + std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { + assert(inputIdx == 0 && "operators supports only 1 inputs"); + (void) inputIdx; // avoid unused warning + return std::static_pointer_cast<Data>(mInput); + } + std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final { + assert(outputIdx == 0 && "operator supports only 1 output"); + (void) outputIdx; // avoid unused warning + return std::static_pointer_cast<Data>(mOutput); + } + + + void setBackend(const std::string &name) { + mImpl = Registrar<MaxPooling_Op<DIM>>::create(name)(*this); + mOutput->setBackend(name); + + // FIXME: temporary workaround + mInput->setBackend(name); + } + + void setDatatype(const DataType &datatype) { + mOutput->setDatatype(datatype); + + // FIXME: temporary workaround + mInput->setDatatype(datatype); + } + + inline IOIndex_t nbInputs() const noexcept override final { return 1; } + inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } + inline IOIndex_t nbOutputs() const noexcept override final { return 1; } +}; + +template <std::array<DimSize_t, 1>::size_type DIM> +inline std::shared_ptr<Node> MaxPooling(const std::array<DimSize_t, DIM> &kernel_dims, + const std::string& name = "", + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0)) { + // FIXME: properly handle default w&b initialization in every cases + static_assert(DIM<=MaxDim,"Too many kernel dimensions required by MaxPooling, not supported"); + auto avgPool = std::make_shared<Node>(std::make_shared<MaxPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, padding_dims), name); + return avgPool; +} + +template <DimSize_t DIM> +inline std::shared_ptr<Node> MaxPooling( + DimSize_t const (&kernel_dims)[DIM], + const std::string& name = "", + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0)) { + static_assert(DIM<=MaxDim,"Too many kernel dimensions required by MaxPooling, not supported"); + return MaxPooling(to_array(kernel_dims), name, stride_dims, padding_dims); +} +} // namespace Aidge + +namespace { +template <> +const char *const EnumStrings<Aidge::MaxPoolingParam>::data[] = {"StrideDims", "KernelDims", "PaddingDims"}; +} + +#endif /* AIDGE_CORE_OPERATOR_MAXPOOLING_H_ */ diff --git a/python_binding/operator/pybind_MaxPooling.cpp b/python_binding/operator/pybind_MaxPooling.cpp new file mode 100644 index 000000000..9bd951c44 --- /dev/null +++ b/python_binding/operator/pybind_MaxPooling.cpp @@ -0,0 +1,89 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ +#ifdef PYBIND +#include <pybind11/pybind11.h> +#include <pybind11/stl.h> + +#include <string> +#include <vector> +#include <array> + +#include "aidge/utils/Parameter.hpp" +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/operator/MaxPooling.hpp" +#include "aidge/operator/Operator.hpp" +#include "aidge/utils/Types.h" +#include "aidge/data/Tensor.hpp" + +namespace py = pybind11; +namespace Aidge { + +template <DimIdx_t DIM> void declare_MaxPoolingOp(py::module &m) { + py::class_<MaxPooling_Op<DIM>, std::shared_ptr<MaxPooling_Op<DIM>>, Operator, PyAbstractParametrizable>( + m, ("MaxPoolingOp" + std::to_string(DIM) + "D").c_str(), + py::multiple_inheritance()) + .def(py::init<const std::array<DimSize_t, DIM> &, + const std::array<DimSize_t, DIM> &, + const std::array<DimSize_t, (DIM<<1)> &>(), + py::arg("kernel_dims"), + py::arg("stride_dims"), + py::arg("padding_dims")); + + m.def(("MaxPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims, + const std::string& name, + const std::vector<DimSize_t> &stride_dims, + const std::vector<DimSize_t> &padding_dims) { + // Lambda function wrapper because PyBind fails to convert const array. + // So we use a vector that we convert in this function to a const DimeSize_t [DIM] array. + if (kernel_dims.size() != DIM) { + throw std::runtime_error("kernel_dims size [" + std::to_string(kernel_dims.size()) + "] does not match DIM [" + std::to_string(DIM) +"]"); + } + if (stride_dims.size() != DIM) { + throw std::runtime_error("stride_dims size [" + std::to_string(stride_dims.size()) + "] does not match DIM [" + std::to_string(DIM) +"]"); + } + if (padding_dims.size() != (DIM<<1)) { + throw std::runtime_error("padding_dims size [" + std::to_string(padding_dims.size()) + "] does not match DIM [" + std::to_string(DIM<<1) +"]"); + } + DimSize_t tmp_kernel_dims_array[DIM]; + for (size_t i = 0; i < DIM; ++i) { + tmp_kernel_dims_array[i] = kernel_dims[i]; + } + DimSize_t tmp_stride_dims_array[DIM]; + for (size_t i = 0; i < DIM; ++i) { + tmp_stride_dims_array[i] = stride_dims[i]; + } + DimSize_t tmp_padding_dims_array[DIM<<1]; + for (size_t i = 0; i < (DIM<<1); ++i) { + tmp_padding_dims_array[i] = padding_dims[i]; + } + const DimSize_t (&kernel_dims_array)[DIM] = tmp_kernel_dims_array; + const DimSize_t (&stride_dims_array)[DIM] = tmp_stride_dims_array; + const DimSize_t (&padding_dims_array)[DIM<<1] = tmp_padding_dims_array; + return MaxPooling<DIM>(to_array(kernel_dims_array), name, to_array(stride_dims_array), to_array(padding_dims_array)); + }, py::arg("kernel_dims"), + py::arg("name") = "", + py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("padding_dims") = std::vector<DimSize_t>(DIM<<1,0)); + +} + + +void init_MaxPooling(py::module &m) { + declare_MaxPoolingOp<1>(m); + declare_MaxPoolingOp<2>(m); + declare_MaxPoolingOp<3>(m); + + // FIXME: + // m.def("MaxPooling1D", static_cast<NodeAPI(*)(const char*, int, int, int const + // (&)[1])>(&MaxPooling)); +} +} // namespace Aidge +#endif \ No newline at end of file diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp index b861f881c..78418d51a 100644 --- a/python_binding/pybind_core.cpp +++ b/python_binding/pybind_core.cpp @@ -29,6 +29,7 @@ void init_FC(py::module&); void init_GenericOperator(py::module&); void init_LeakyReLU(py::module&); void init_Matmul(py::module&); +void init_MaxPooling(py::module&); void init_Producer(py::module&); void init_ReLU(py::module&); void init_Softmax(py::module&); @@ -75,6 +76,7 @@ void init_Aidge(py::module& m){ init_GenericOperator(m); init_LeakyReLU(m); init_Matmul(m); + init_MaxPooling(m); init_ReLU(m); init_Softmax(m); -- GitLab