From 33c779b288d8e1ca8ee46800e43d34b4dc011f9d Mon Sep 17 00:00:00 2001 From: Olivier BICHLER <olivier.bichler@cea.fr> Date: Mon, 9 Oct 2023 18:43:40 +0200 Subject: [PATCH] Fixed inputs/outputs mechanism --- include/aidge/operator/MetaOperator.hpp | 167 +++++++++++++++--------- include/aidge/scheduler/Scheduler.hpp | 5 - include/aidge/utils/Utils.hpp | 5 +- src/scheduler/Scheduler.cpp | 16 +-- 4 files changed, 114 insertions(+), 79 deletions(-) diff --git a/include/aidge/operator/MetaOperator.hpp b/include/aidge/operator/MetaOperator.hpp index b45c0ae8a..6018c7c15 100644 --- a/include/aidge/operator/MetaOperator.hpp +++ b/include/aidge/operator/MetaOperator.hpp @@ -13,6 +13,9 @@ #define AIDGE_CORE_OPERATOR_METAOPERATOR_H_ #include "aidge/operator/Operator.hpp" +#include "aidge/operator/AvgPooling.hpp" +#include "aidge/operator/MaxPooling.hpp" +#include "aidge/operator/Conv.hpp" #include "aidge/operator/Conv.hpp" #include "aidge/operator/Pad.hpp" #include "aidge/graph/GraphView.hpp" @@ -25,11 +28,20 @@ class MetaOperator_Op : public Operator, public: std::vector<std::shared_ptr<Tensor>> mInputs; std::vector<std::shared_ptr<Tensor>> mOutputs; // These are shared with micro-graph outputs tensors + + // Micro-graph handling: std::shared_ptr<GraphView> mGraph; // Meta operator micro-graph std::shared_ptr<SequentialScheduler> mScheduler; + // Need to store an ordored list of input/output operators for the micro-graph, + // because input/output nodes in a GraphView are unordered. + // TODO: refactor GraphView to handle ordered input/output? + std::vector<std::pair<std::shared_ptr<Operator>, IOIndex_t>> mInputOps; + std::vector<std::pair<std::shared_ptr<Operator>, IOIndex_t>> mOutputOps; public: - MetaOperator_Op(const char *type, const std::shared_ptr<GraphView>& graph) + MetaOperator_Op(const char *type, const std::shared_ptr<GraphView>& graph, + std::vector<NodePtr> inputNodes = std::vector<NodePtr>(), + std::vector<NodePtr> outputNodes = std::vector<NodePtr>()) : Operator(type), mGraph(graph) { @@ -41,6 +53,49 @@ public: for (std::size_t i = 0; i < mOutputs.size(); ++i) { mOutputs[i] = std::make_shared<Tensor>(); } + + // Fill inputsNodes and outputsNodes when there is no ambiguity + if (inputNodes.empty()) { + AIDGE_ASSERT(mGraph->inputNodes().size() == 1, "need to specify internal nodes input mapping"); + inputNodes.push_back(*mGraph->inputNodes().begin()); + } + + if (outputNodes.empty()) { + AIDGE_ASSERT(mGraph->outputNodes().size() == 1, "need to specify internal nodes output mapping"); + outputNodes.push_back(*mGraph->outputNodes().begin()); + } + + // Identify inputs that are outside the micro-graph + for (const auto& inputNode : inputNodes) { + AIDGE_ASSERT(mGraph->inView(inputNode), "input node must be in the graph"); + const std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> inputNodeinputs = + inputNode->inputs(); + + int inputIdx = 0; // input idx relative to the current node + for (const auto& in : inputNodeinputs) { + if (in.first == nullptr || !mGraph->inView(in.first)) { + // The input is not connected inside the micro-graph + // (no connection to this input or connection outside the micro-graph) + // => it is therefore an input for the meta-operator + mInputOps.push_back(std::make_pair(inputNode->getOperator(), inputIdx)); + } + + ++inputIdx; + } + } + + // The outputs of the output nodes are also the outputs of the meta-operator + for (const auto& outputNode : outputNodes) { + AIDGE_ASSERT(mGraph->inView(outputNode), "output node must be in the graph"); + const std::vector<std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>>> outputNodeoutputs = + outputNode->outputs(); + + int outputIdx = 0; // output idx relative to the current node + for (const auto& out : outputNodeoutputs) { + mOutputOps.push_back(std::make_pair(outputNode->getOperator(), outputIdx)); + ++outputIdx; + } + } } /** @@ -73,20 +128,8 @@ public: void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { assert(strcmp(data->type(), Tensor::Type) == 0 && "input data must be of Tensor type"); - // Associate micro-graph inputs - std::size_t nbGraphIn = 0U; - // TODO: FIXME: inputNodes() is unordered! - for (const std::shared_ptr<Node>& inputNode : mGraph->inputNodes()) { - const std::size_t nbIn = inputNode->nbInputs(); - - if (inputIdx < nbGraphIn + nbIn) { - // FIXME: !!!workaround only for the PaddedConv unit test!!! - inputNode->getOperator()->associateInput(inputIdx /*- nbGraphIn*/, data); - break; - } - - nbGraphIn += nbIn; - } + const auto& inputOp = mInputOps[inputIdx]; + inputOp.first->associateInput(inputOp.second, data); // Associate inputs for custom implementation mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); @@ -97,16 +140,9 @@ public: mGraph->forwardDims(); // Associate outputs to micro-graph outputs for custom implementation - std::size_t nbGraphOut = 0U; - // TODO: FIXME: inputNodes() is unordered! - for (const std::shared_ptr<Node>& outputNode : mGraph->outputNodes()) { - const std::size_t nbOut = outputNode->nbOutputs(); - - for (size_t outputIdx = nbGraphOut; outputIdx < nbGraphOut + nbOut; ++outputIdx) { - mOutputs[outputIdx] = outputNode->getOperator()->getOutput(outputIdx - nbGraphOut); - } - - nbGraphOut += nbOut; + for (size_t outputIdx = 0; outputIdx < mOutputOps.size(); ++outputIdx) { + const auto& outputOp = mOutputOps[outputIdx]; + mOutputs[outputIdx] = outputOp.first->getOutput(outputOp.second); } } @@ -171,19 +207,8 @@ public: return mImpl->getNbRequiredData(inputIdx); } else { - std::size_t nbGraphIn = 0U; - // TODO: FIXME: inputNodes() is unordered! - for (const std::shared_ptr<Node>& inputNode : mGraph->inputNodes()) { - const std::size_t nbIn = inputNode->nbInputs(); - - if (inputIdx < nbGraphIn + nbIn) { - return inputNode->getOperator()->getNbRequiredData(inputIdx - nbGraphIn); - } - - nbGraphIn += nbIn; - } - - assert(false && "inputIdx out of range"); + const auto& inputOp = mInputOps[inputIdx]; + return inputOp.first->getNbRequiredData(inputOp.second); } } @@ -192,19 +217,8 @@ public: return mImpl->getNbConsumedData(inputIdx); } else { - std::size_t nbGraphIn = 0U; - // TODO: FIXME: inputNodes() is unordered! - for (const std::shared_ptr<Node>& inputNode : mGraph->inputNodes()) { - const std::size_t nbIn = inputNode->nbInputs(); - - if (inputIdx < nbGraphIn + nbIn) { - return inputNode->getOperator()->getNbConsumedData(inputIdx - nbGraphIn); - } - - nbGraphIn += nbIn; - } - - assert(false && "inputIdx out of range"); + const auto& inputOp = mInputOps[inputIdx]; + return inputOp.first->getNbConsumedData(inputOp.second); } } @@ -213,19 +227,8 @@ public: return mImpl->getNbProducedData(outputIdx); } else { - std::size_t nbGraphOut = 0U; - // TODO: FIXME: outputNodes() is unordered! - for (const std::shared_ptr<Node>& outputNode : mGraph->outputNodes()) { - const std::size_t nbOut = outputNode->nbOutputs(); - - if (outputIdx < nbGraphOut + nbOut) { - return outputNode->getOperator()->getNbProducedData(outputIdx - nbGraphOut); - } - - nbGraphOut += nbOut; - } - - assert(false && "outputIdx out of range"); + const auto& outputOp = mOutputOps[outputIdx]; + return outputOp.first->getNbProducedData(outputOp.second); } } @@ -296,7 +299,9 @@ inline std::shared_ptr<Node> PaddedConv(DimSize_t in_channels, graph->add(pad, false); graph->add(conv, false); - return std::make_shared<Node>(std::make_shared<MetaOperator_Op>("PaddedConv", graph), name); + // Need to specify the ordered list of input operators + const std::vector<NodePtr> orderedInputNodes = {pad, conv}; + return std::make_shared<Node>(std::make_shared<MetaOperator_Op>("PaddedConv", graph, orderedInputNodes), name); } template <DimSize_t DIM> @@ -311,6 +316,38 @@ inline std::shared_ptr<Node> PaddedConv( { return PaddedConv<DIM>(in_channels, out_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims); } + +template <std::array<DimSize_t, 1>::size_type DIM> +inline std::shared_ptr<Node> PaddedAvgPooling(DimSize_t in_channels, + DimSize_t out_channels, + const std::array<DimSize_t, DIM> &kernel_dims, + const std::string& name = "", + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<std::array<DimSize_t, 2>, DIM> &padding_dims = {0}) +{ + auto graph = Sequential({ + Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""), + AvgPooling_Op<DIM>(kernel_dims, (!name.empty()) ? name + "_avgpooling" : "", stride_dims) + }); + + return std::make_shared<Node>(std::make_shared<MetaOperator_Op>("PaddedAvgPooling", graph), name); +} + +template <std::array<DimSize_t, 1>::size_type DIM> +inline std::shared_ptr<Node> PaddedMaxPooling(DimSize_t in_channels, + DimSize_t out_channels, + const std::array<DimSize_t, DIM> &kernel_dims, + const std::string& name = "", + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<std::array<DimSize_t, 2>, DIM> &padding_dims = {0}) +{ + auto graph = Sequential({ + Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""), + MaxPooling_Op<DIM>(kernel_dims, (!name.empty()) ? name + "_maxpooling" : "", stride_dims) + }); + + return std::make_shared<Node>(std::make_shared<MetaOperator_Op>("PaddedMaxPooling", graph), name); +} } // namespace Aidge #endif /* MetaOperator_H_ */ diff --git a/include/aidge/scheduler/Scheduler.hpp b/include/aidge/scheduler/Scheduler.hpp index 9916ee200..1896894ee 100644 --- a/include/aidge/scheduler/Scheduler.hpp +++ b/include/aidge/scheduler/Scheduler.hpp @@ -89,11 +89,6 @@ private: * */ std::vector<std::shared_ptr<Node>> mStaticSchedule; - /** - * @brief Number of computation node (i.e: nb nodes != Producer) - * - */ - std::size_t mComputationNumber = 0; // TODO: Check if not inferable from mStaticSchedule }; } // namespace Aidge diff --git a/include/aidge/utils/Utils.hpp b/include/aidge/utils/Utils.hpp index 89dc25bee..5facc80ea 100644 --- a/include/aidge/utils/Utils.hpp +++ b/include/aidge/utils/Utils.hpp @@ -35,4 +35,7 @@ do { \ } while (false) #endif -#endif //AIDGE_UTILS_H_ \ No newline at end of file +#define AIDGE_ASSERT(stm, ...) \ +if (!(stm)) { AIDGE_THROW_OR_ABORT(std::runtime_error, __VA_ARGS__); } + +#endif //AIDGE_UTILS_H_ diff --git a/src/scheduler/Scheduler.cpp b/src/scheduler/Scheduler.cpp index 939289414..554d745e6 100644 --- a/src/scheduler/Scheduler.cpp +++ b/src/scheduler/Scheduler.cpp @@ -40,13 +40,10 @@ void Aidge::SequentialScheduler::generateScheduling(bool verbose) { // TODO: optimize memory usage // setup initial producers list - mComputationNumber = 0; std::set<std::shared_ptr<Node>> producers; for (const std::shared_ptr<Node>& nodePtr : mGraphView->getNodes()) { if (nodePtr->type() == "Producer") { producers.insert(nodePtr); - } else { - ++mComputationNumber; } } // add Data Input @@ -178,15 +175,19 @@ void Aidge::SequentialScheduler::generateScheduling(bool verbose) { // TODO: handle multiple inputs/outputs void Aidge::SequentialScheduler::forward(bool forwardDims, bool verbose) { + // Forward dims (if allowed) if (forwardDims) {mGraphView->forwardDims(); } - // add each Producer Node. - std::set<std::shared_ptr<Node>> computationOver; + // Generate scheduling *only if empty* + // If scheduling was already generated (in one or several steps, i.e. one or + // several successive call to generateScheduling()), do not generate it twice + if (mStaticSchedule.empty()) { + this->generateScheduling(); + } + // Clear previous scheduling results mScheduling.clear(); - mStaticSchedule.clear(); - this->generateScheduling(); int cpt = 0; for (const auto& runnable : mStaticSchedule) { if (verbose) @@ -204,7 +205,6 @@ void Aidge::SequentialScheduler::forward(bool forwardDims, bool verbose) { } if (!verbose) drawProgressBar(1.0, 50, " "); printf("\n"); - } void Aidge::SequentialScheduler::saveSchedulingDiagram(const std::string& fileName) const { -- GitLab