diff --git a/include/aidge/operator/Slice.hpp b/include/aidge/operator/Slice.hpp index 7db5867fe1ac512898356c21ff5cce685364f0f5..757e08fe97dd1cc572c08ac7c2b454daa234bdc1 100644 --- a/include/aidge/operator/Slice.hpp +++ b/include/aidge/operator/Slice.hpp @@ -24,6 +24,12 @@ #include "aidge/utils/Types.h" namespace Aidge { +class Slice_OpImpl : public OperatorImpl { +public: + Slice_OpImpl(const Operator& op, const std::string& backend = ""): OperatorImpl(op, backend) {} + void forward() override; +}; + enum class SliceAttr { Starts, Ends, Axes }; class Slice_Op @@ -44,7 +50,9 @@ public: Attributes_(attr<SliceAttr::Starts>(starts), attr<SliceAttr::Ends>(ends), attr<SliceAttr::Axes>(axes)) - {} + { + mImpl = std::make_shared<Slice_OpImpl>(*this); + } /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its @@ -55,10 +63,11 @@ public: : OperatorTensor(op), Attributes_(op) { - if (op.mImpl){ + if (!op.backend().empty()) { SET_IMPL_MACRO(Slice_Op, *this, op.backend()); - }else{ - mImpl = nullptr; + } + else { + mImpl = std::make_shared<Slice_OpImpl>(*this); } } @@ -71,10 +80,7 @@ public: bool forwardDims(bool allowDataDependency = false) override final; - void setBackend(const std::string &name, DeviceIdx_t device = 0) override { - SET_IMPL_MACRO(Slice_Op, *this, name); - mOutputs[0]->setBackend(name, device); - } + void setBackend(const std::string &name, DeviceIdx_t device = 0) override; static const std::vector<std::string> getInputsName(){ return {"data_input"}; diff --git a/src/operator/Slice.cpp b/src/operator/Slice.cpp index 38316718cf5078b4deb44961594cc91956980e62..405b11be7f3d9674efa4a601a9ee01c3ae07519d 100644 --- a/src/operator/Slice.cpp +++ b/src/operator/Slice.cpp @@ -22,6 +22,59 @@ #include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Types.h" +void Aidge::Slice_OpImpl::forward() { + const Slice_Op& op = dynamic_cast<const Slice_Op&>(mOp); + const auto inputDims = op.getInput(0)->dims(); + auto slicedDims = op.getInput(0)->dims(); + + std::size_t beginning = 0; + DimSize_t nbAxes = op.getAttr<SliceAttr::Axes>().size(); + for (std::size_t i = 0; i < nbAxes; ++i) { + // For each slice operation get the params and cast them to size_t + const std::int64_t axis_ = op.getAttr<SliceAttr::Axes>()[i]; + const std::int64_t start_ = op.getAttr<SliceAttr::Starts>()[i]; + const std::int64_t end_ = op.getAttr<SliceAttr::Ends>()[i]; + const std::size_t axis = axis_ >= 0 ? axis_ : static_cast<std::size_t>(axis_) + inputDims.size(); + const std::size_t start = start_ >= 0 ? start_ : start_ + inputDims[axis]; + const std::size_t end = end_ >= 0 ? end_ : end_ + inputDims[axis]; + std::size_t stride = 1; + for (std::size_t j = inputDims.size() - 1; j > axis; --j) stride *= inputDims[j]; + beginning += start * stride; + const std::size_t sliceLength = end - start + 1; + slicedDims[axis] = sliceLength; + } + + const std::size_t nbDims = slicedDims.size(); + + // for inputDims = {4,5,5,3} & slicedDims = {3,2,2,1}, substractDims = {1,5,5,3} + std::vector<std::size_t> substractedDims = std::vector<std::size_t>(nbDims); + for (std::size_t i = 0; i < nbDims; ++i) { + substractedDims[i] = inputDims[i] - slicedDims[i]; + } + + // for slicedDims = {3,2,2,1}, prodSlicedDims = {12,4,2,1} + std::vector<std::size_t> prodSlicedDims = std::vector<std::size_t>(nbDims); + std::vector<std::size_t> prodInputDims = std::vector<std::size_t>(nbDims + 1); + prodSlicedDims[nbDims - 1] = slicedDims[nbDims - 1]; + prodInputDims[nbDims - 1] = inputDims[nbDims - 1]; + prodInputDims[nbDims] = 1; + for (std::size_t i = 2; i <= nbDims; ++i) { + prodSlicedDims[nbDims - i] = prodSlicedDims[nbDims - i + 1] * slicedDims[nbDims - i]; + prodInputDims[nbDims - i] = prodInputDims[nbDims - i + 1] * inputDims[nbDims - i]; + } + + std::size_t j = 0; + std::size_t i = 0; + for (; j < prodSlicedDims[0];) { + op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(beginning + i), 1, j); + ++i; + ++j; + for (std::size_t idx = nbDims - 1; idx > 0; --idx) { + i += j % prodSlicedDims[idx] == 0 ? substractedDims[idx] * prodInputDims[idx + 1] : 0; + } + } +} + const std::string Aidge::Slice_Op::Type = "Slice"; bool Aidge::Slice_Op::forwardDims(bool /*allowDataDependency*/) { @@ -52,3 +105,13 @@ bool Aidge::Slice_Op::forwardDims(bool /*allowDataDependency*/) { mOutputs[0]->resize(outDims); return true; } + +void Aidge::Slice_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { + if (Registrar<Slice_Op>::exists({name})){ + SET_IMPL_MACRO(Slice_Op, *this, name); + } + else { + mImpl = std::make_shared<Slice_OpImpl>(*this); + } + mOutputs[0]->setBackend(name, device); +} diff --git a/unit_tests/operator/Test_SliceImpl.cpp b/unit_tests/operator/Test_SliceImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..91ae92848b552a6038a4cb5f8dd3848b20ac2168 --- /dev/null +++ b/unit_tests/operator/Test_SliceImpl.cpp @@ -0,0 +1,160 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Slice.hpp" + +using namespace Aidge; + +TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") { + SECTION("1D Tensor") { + std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array1D<int,10> { + {0, 1, 2,-3, 4,-5,-6, 7, 8, 9} + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<int,4> { + {0, 1, 2,-3} + }); + + std::shared_ptr<Node> mySlice = Slice({0}, {3}, {0}); + auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); + mySlice->getOperator()->associateInput(0,input0); + mySlice->getOperator()->setDataType(DataType::Int32); + mySlice->getOperator()->setBackend("cpu"); + mySlice->forward(); + + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); + REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); + } + + SECTION("2D Tensor") { + std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array2D<int,2,10> { + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + } + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<int,2,3> { + { + {-5,-6, 7}, + {-5,-6, 7} + } + }); + + std::shared_ptr<Node> mySlice = Slice({0,5}, {1,7}, {0,1}); + auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); + mySlice->getOperator()->associateInput(0,input0); + mySlice->getOperator()->setDataType(DataType::Int32); + mySlice->getOperator()->setBackend("cpu"); + mySlice->forward(); + // mySlice->getOperator()->output(0).print(); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); + REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); + } + + SECTION("3D Tensor") { + std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array3D<int,2,2,10> { + { + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + }, + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + } + } + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<int,1,1,3> { + { + { + { 4,-5,-6} + } + } + }); + + std::shared_ptr<Node> mySlice = Slice({0,1,4}, {0,1,6}, {0,1,2}); + auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); + mySlice->getOperator()->associateInput(0,input0); + mySlice->getOperator()->setDataType(DataType::Int32); + mySlice->getOperator()->setBackend("cpu"); + mySlice->forward(); + // mySlice->getOperator()->output(0).print(); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); + REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); + } + + SECTION("4D Tensor") { + std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array4D<int,2,2,2,10> { + { + { + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + }, + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + } + }, + { + { + { 0, 1, 2,-3, 6,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + }, + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3,11,-5,-6, 7,-1,10} + } + } + } + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array4D<int,2,2,2,10> { + { + { + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + }, + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + } + }, + { + { + { 0, 1, 2,-3, 6,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} + }, + { + { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, + {-5, 4, 2,-3,11,-5,-6, 7,-1,10} + } + } + } + }); + + std::shared_ptr<Node> mySlice = Slice({0,0,0,0}, {1,1,1,9}, {0,1,2,3}); + auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); + mySlice->getOperator()->associateInput(0,input0); + mySlice->getOperator()->setDataType(DataType::Int32); + mySlice->getOperator()->setBackend("cpu"); + mySlice->forward(); + // mySlice->getOperator()->output(0).print(); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); + REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); + } +}