diff --git a/src/operator/ReduceMean.cpp b/src/operator/ReduceMean.cpp new file mode 100644 index 0000000000000000000000000000000000000000..0de676e22ec668a9b41d7d61f184465d431715a2 --- /dev/null +++ b/src/operator/ReduceMean.cpp @@ -0,0 +1,61 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/ReduceMean.hpp" + +#include <algorithm> // std::for_each, std::sort +#include <cstddef> // std::size_t +#include <cstdint> // std::int32_t +#include <memory> +#include <stdexcept> // std::runtime_error +#include <string> +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +const std::string Aidge::ReduceMean_Op::Type = "ReduceMean"; + +void Aidge::ReduceMean_Op::computeOutputDims() { + if (!getInput(0)) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Every input should be associated with a Tensor"); + } + if (!getInput(0)->empty()) { + // make Axes attribute positive + std::vector<std::int32_t>& axes = this->template getAttr<ReduceMeanAttr::Axes>(); + std::for_each(axes.begin(), axes.end(), [&] (std::int32_t& val) { + if (val < 0) + val+=static_cast<std::int32_t>(getInput(0)->nbDims()); + }); + std::sort(axes.begin(), axes.end()); + + // build output dimensions + std::vector<DimSize_t> outDims = getInput(0)->dims(); + if (this->template getAttr<ReduceMeanAttr::KeepDims>()) { + std::for_each(axes.cbegin(), axes.cend(), [&outDims] (const std::int32_t& val) { outDims[val] = 1; }); + } + else { + for (auto it = axes.crbegin(); it != axes.crend(); ++it) + outDims.erase(outDims.begin() + static_cast<std::size_t>(*it)); + } + + // TODO: change {1} for {} when scalar Tensors are better handled. + mOutputs[0]->resize((outDims.size()>0) ? outDims : std::vector<DimSize_t>({1})); + + } + } + +void Aidge::ReduceMean_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { + SET_IMPL_MACRO(ReduceMean_Op, *this, name); + mOutputs[0]->setBackend(name, device); +} \ No newline at end of file